Application of Methods of Fuzzy Logic and Neural Networks for Automation of Technological Processes in Oil and Gas Engineering and Increasing the Efficiency of Oil Production
DOI:
https://doi.org/10.22213/2410-9304-2021-2-83-89Keywords:
fuzzy logic, neural networks, neuro-fuzzy controller with discrete termsAbstract
This paper discusses the issue of improving the efficiency of pumping systems, as the most energy-intensive part of an oil and gas field. The relevance of the research topic for the oil and gas engineering industry is considered, the main goal of the research is formulated, which is to digitalize the processes under consideration and create domestic automatic control systems using fuzzy logic algorithms and neural networks. Methods of constructing modern control systems are considered, their advantages and disadvantages are analyzed. The features of various approaches to the construction of automatic control systems for technological objects during oil production and transportation are considered. The most common are direct digital control or feedback. A classic description of automation and telemechanization objects based on system parameters is presented. The main characteristics of the considered technological processes, such as oil production, preparation and transportation, which do not allow for achieving maximum efficiency in the existing approach are given. The most important factors for efficient systems of automatic data objects are identified. The experimental data obtained have shown that the parameters of the technological process vary within significant limits from the nominal values, which leads to a low quality of operation of the regulators. The accuracy of the system identification models based on linear autoregressive methods is no more than 30%. It is concluded that it is necessary to use for control of nonlinear objects with inherent uncertainties based on neuro-fuzzy and fuzzy controllers with discrete terms.References
Дегтярев Г. Л., Сагдатуллин А. М. Модель интеллектуальной поддержки управления процессами добычи и транспорта нефти в условиях неопределенности // Математические методы в технике и технологиях - ММТТ. 2020. Т. 1. С. 11-17.
Тененев В. А., Шаталова О. М. Методы нечеткого логического вывода при построении экспертных систем прогнозирования инновационных процессов // Интеллектуальные системы в производстве. 2019. Т. 17. № 4. С. 129-136.
Vigya, Mahto, T. et al. Renewable generation based hybrid power system control using fractional order-fuzzy controller. Energy Reports. 2021. 7, pp. 641-653. https://doi.org/10.1016/j.egyr.2021.01.022.
Elsisi, M., Bazmohammadi, N., Guerrero, J.M., Ebrahim, M.A. Energy management of controllable loads in multi-area power systems with wind power penetration based on new supervisor fuzzy nonlinear sliding mode control. Energy. 2021. 221,119867. DOI: 10.1016/j.energy.2021.119867.
Сагдатуллин А. М. Применение новой информационной модели при обучении моделированию производственных объектов машиностроения в условиях аддитивного производства // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2020. Т. 76. № 1. С. 94-98.
Оптимизация распределения функций принадлежности при синтезе нечеткого регулятора для систем управления тепловыми процессами / Е. П. Иванкова, В. Г. Косицын, В. А. Соловьев, С. П. Черный // Информатика и системы управления. 2003. № 1 (5). С. 73-82.
Демидова Г. Л, Кузина А. Ю., Лукичева Д. В. Особенности применения нечетких регуляторов на примере управления скоростью вращения электродвигателя постоянного тока // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16, № 5. С. 872-878.
Вильданов Р. Г., Панфилов В. В., Аслаев Р. Р. Исследование и реализация системы автоматического управления на основе нечеткой логики // Современные проблемы науки и образования. 2015. № 1-1. URL: http://www.science-education.ru/ru/article/ view?id=19590 (дата обращения: 25.02.2021).
Солонников Ю. Я., Иванов В. Э. Реализация нечеткого регулятора для системы контроля уровня жидкости, используя программный комплекс labview // Ученые заметки ТОГУ : электронное научное издание. 2017. Т. 8, № 3. С. 119-125.
Сагдатуллин А. М. Разработка операторского интерфейса удаленного телеуправления для монитора реального времени заполнения смеси // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2020. Т. 76. № 1. С. 99-103.
Padhy S., Panda S. Application of a simplified Grey Wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. 2021. Protection and Control of Modern Power Systems, 6(1), 2. DOI: 10.1186/s41601-021-00180-4.
Taifour A. A., Ahmed H. A. Design of Adaptive Neuro-Fuzzy Controller for Flow Systems. European Journal of Advances in Engineering and Technology, 2017, 4 (7): 532-540.
Rady Raz N. et al. Experiment-based affect heuristic using fuzzy rules and Taguchi statistical method for tuning complex systems. Expert Systems with Applications. Volume 172, 15 June 2021, 114638. https://doi.org/10.1016/j.eswa.2021.114638.
Muhlasin et al. Optimization of Water Level Control Systems Using ANFIS and Fuzzy-PID Model. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE). DOI: 10.1109/ICVEE50212.2020.9243229.
Chabni F. et al. The Application of Fuzzy Control in Water Tank Level Using Arduino. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 7, no. 4, 2016. Pp. 261-265.