Investigation of the Possibility of Building a Neural Fuzzy Logic Controller with Discrete Terms for Controlling and Automating Oil and Gas Engineering Facilities
DOI:
https://doi.org/10.22213/2410-9304-2021-3-105-110Keywords:
fuzzy logic, neural networks, neuro-fuzzy controller with discrete termsAbstract
The issue of increasing the efficiency of functioning of classical control systems for technological processes and objects of oil and gas engineering is investigated. The relevance of this topic lies in the need to improve the quality of the control systems for the production and transportation of oil and gas. The purpose of the scientific work is to develop a neuro-fuzzy logic controller with discrete terms for the control and automation of pumping units and pumping stations. It is noted that fuzzy logic, neural network algorithms, together with control methods based on adaptation and synthesis of control objects, make it possible to learn the automation system and work under conditions of uncertainty. Methods for constructing classical control systems are studied, the advantages and disadvantages of fuzzy controllers, as the main control system, are analyzed. A method for constructing a control system based on a neuro-fuzzy controller with discrete terms in conditions of uncertainty and dynamic parameters of the process is proposed. The positive features of the proposed regulator include a combination of fuzzy reasoning about a technological object and mathematical predictive models, a fuzzy control system gains the possibility of subjective description based on neural network structures, as well as adaptation to the characteristics of the object. The graph of dependence for the term-set of the controlled parameter on the degree of membership is presented. A possible implementation of tracking the triggering of one of the rules of the neuro-fuzzy system in the format of functional block diagrams is presented. The process of forming an expert knowledge base in a neuro-fuzzy control system is considered. For analysis, a graph of the dependence of the output parameter values is shown. According to the results obtained, the deviation of the values for the model and the real process does not exceed 18%, which allows us to speak of a fairly stable operation of the neuro-fuzzy controller in automatic control systems.References
Земцов А. Ф., Грязнов И. Е., Поступаева С. Г. Сравнительный анализ и исследование работы классического ПИД-регулятора с «нечеткими» его разновидностями // Известия Волгоградского государственного технического университета. 2018. № 2 (212). С. 63-66.
Исследование классических и нечетких ПИД регуляторов для нестационарных объектов управления / В. И. Копылов, Д. И. Муравьев, В. Г. Коломыцев, Г. И. Рустамханова // Фундаментальные исследования. 2016. № 11. С. 532-536.
Бураков М. В., Кирпичников А. П. Нечеткий регулятор ПИД-типа для нелинейного объекта // Вестник Технологического университета. 2015. Т. 18, № 4. С. 242-244.
Дегтярев Г. Л., Сагдатуллин А. М. Модель интеллектуальной поддержки управления процессами добычи и транспорта нефти в условиях неопределенности // Математические методы в технике и технологиях - ММТТ. 2020. Т. 1. С. 11-17.
Ahmed T. Analysis and Design of a Fuzzy Controller and Performance Comparison Between the PID Controller and Fuzzy Controller // International journal of scientific & technology research. Vol. 9, Iss. 10, 2020.
Mardlijah et al. Comparison between PID controller and fuzzy sliding mode control (FSMC) on super heater system. 2019 J. Phys.: Conf. Ser. 1218 012055.
Nun Pitalúa-Díaz et al. Comparative Analysis between Conventional PI and Fuzzy Logic PI Controllers for Indoor Benzene Concentrations // Sustainability 2015, 7, 5398-5412; doi:10.3390/su7055398.
Ontiveros-Robles E., Melin P. and Castillo O. Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika. Vol. 5 4, 2018, N 1, pp. 175-201.
Катасёв А. С. Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности // Компьютерные исследования и моделирование. 2019. Т. 11. Вып. 3. С. 477-492.
Сагдатуллин А. М. Разработка операторского интерфейса удаленного телеуправления для монитора реального времени заполнения смеси // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2020. Т. 76, № 1. С. 99-103.
Harliana P., Rahim R. Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making. 2017 J. Phys.: Conf. Ser. 930 012029
Сагдатуллин А. М. Применение новой информационной модели при обучении моделированию производственных объектов машиностроения в условиях аддитивного производства // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2020. Т. 76, № 1. С. 94-98.
Надеждин И. С., Горюнов А. Г., Маненти Ф. Cистемы управления нестационарным объектом на основе MPC-регулятора и ПИД-регулятора с нечеткой логикой // Управление большими системами: сборник трудов. 2018. № 75. С. 50-75.
Пенской И. С., Рогозин О. В. Нейронечеткий ПИД-регулятор в задаче угловой стабилизации мультироторного БПЛА // Новые информационные технологии в автоматизированных системах. 2018. № 21. С. 320-327.