Combined Estimation of the Mutual Position of the Master and Slave Vehicle by Ultrasonic Receivers and Gnss-Module Data

Authors

  • S. A. Goll RSREU named after V. F. Utkin
  • E. A. Zakharova RSREU named after V. F. Utkin

DOI:

https://doi.org/10.22213/2410-9304-2022-1-4-12

Keywords:

autonomous convoy, information and measurement complex, robotic vehicle, ultrasonic beacon, spatial array of ultrasonic receivers, master position estimation, global navigation satellite system receiver, dynamic error

Abstract

The problem of determining the position of master vehicle when implementing a scenario of robotic vehicle as a part of caravanning driving system is studied. The mentioned scenario is expected the slave vehicle to replicate the motion trajectory of master vehicle represented by human operated vehicle, by another robotic vehicle or by human operator. To provide reliable operation of robotic vehicle within autonomous convoy a reliable and precise assessment of master vehicle position and trajectory regardless of environment is required. Implementation of ultrasonic receivers and emitters within information and measurement complex to determine master-slave vehicle mutual position allows to function at any time of the day inside and outside the premises in the presence of dynamic obstacles, smoke, precipitation, etc. Estimation of position and trajectory of master vehicle is accomplished by means of measuring arrival time of ultrasonic wave emitted by active beacon prior to spatial array of ultrasonic receivers. Similar indirect distance measurement between bacon and each receiver allowed to receive a system of equations to be solved by implementation of Kalman filter with Raugh - Tung - Striebel smoother. Major disadvantage of the approach is 20-meter range, which is enough for complex maneuvering. To increase the range of the complex operation, a combined estimation of the master's position based on measuring data of the spatial array of ultrasonic receivers and the module of global navigation satellite system is proposed.

Author Biographies

S. A. Goll, RSREU named after V. F. Utkin

PhD in Engineering, Associate professor

E. A. Zakharova, RSREU named after V. F. Utkin

Senior Lecturer

References

Zhang C., Noguchi N., Yang L. Leader - follower system using two robot tractors to improve work efficiency //Computers and Electronics in Agriculture. 2016. Т. 121. С. 269-281.

Tabb T. T., Martin S. M., Bevly D. Improved relative positioning for path following in autonomous convoys //Proceedings of the Ground Vehicles Systems Engineering and Technology Symposium. Pp. 7-9.

Travis W., Bevly D. M. Trajectory duplication using relative position information for automated ground vehicle convoys // 2008 IEEE/ION Position, Location and Navigation Symposium. IEEE, 2008. Pp. 1022-1032.

Zhao C. et al. An RGBD data based vehicle detection algorithm for vehicle following systems // 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2013. Pp. 1506-1511.

Cowan N. et al. Vision-based follow-the-leader // Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453). IEEE, 2003. Vol. 2. С. 1796-1801.

Wen Y. J. et al. Infrared sensor based target following device for a mobile robot // 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2011. Pp. 49-54.

Han W., Chin Y. T. Target tracking and pursue using laser scanner // 2nd Asian symposium on Industrial Automation and Robotics BITEC. 2001.

Choi J. et al. Multi-target tracking using a 3d-lidar sensor for autonomous vehicles // 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). IEEE, 2013. Pp. 881-886.

Kim M. et al. RFID-enabled target tracking and following with a mobile robot using direction finding antennas // 2007 IEEE International Conference on Automation Science and Engineering. IEEE, 2007. Pp. 1014-1019.

Perez M. C. et al. Performance comparison of different codes in an ultrasonic positioning system using DS-CDMA // 2009 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2009. Pp. 125-130.

Chen Y., Yao Z., Peng Z. A Novel Method for Asynchronous Time-of-Arrival-Based Source Localization: Algorithms, Performance and Complexity // Sensors. 2020. Vol. 20. No. 12. P. 3466.

Chen C. et al. Target-tracking and path planning for vehicle following in jungle environment // ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. IEEE, 2004. Vol. 1. Pp. 455-460.

Fries C., Wuensche H. J. Autonomous convoy driving by night: The vehicle tracking system //2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 2015. Pp. 1-6.

Барабанов О.О., Барабанова Л. П. Математические задачи дальномерной навигации. М. : ФИЗМАТЛИТ, 2007. 272 с. ISBN 978-5-9221-0874-4.

G Yang, L Zhao, Y Dai, Y Xu A KFL-TOA UWB indoor positioning method for complex environment // 2017 Chinese Automation Congress (CAC). IEEE, 2017. Pp. 3010-3014.

Рудых А. А., Сартисон А. В. Система локализации мобильного робота в помещениях с использованием ультразвуковой системы навигации и фильтра Калмана // Автоматизация и управление в машиностроении. 2017. № 1. С. 31-37.

Hartikainen J and Sumo S. Optimal filtering with Kalman filters and smoothers, A Manual for the Matlab toolbox EKF/UKF, Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Espoo, Finland, August 2011, p.129.

Wang J, Ding W and Wang J. Improving adaptive Kalman filter in GPS/SDINS integration with neural network, Proceedings of ION GNSS 2007, Fort Worth, TX, USA, 25-28 September 2007, vol. 1, pp. 571-579.

Сопоставление методов фильтрации в задачах статистической регуляризации при оценивании параметров радиолокационных систем / О. О. Ситник и др. // Вестник Воронежского государственного университета. Серия системный анализ и информационные технологии. 2013. №. 1. С. 10-16.

Goll S., Zakharova E. An active beacon-based tracking system to be used for mobile robot convoying // 21th International Symposium on Measurement and Control in Robotics. 2018. Pp. 18-24.

Published

15.06.2022

How to Cite

Goll С. А., & Zakharova Е. А. (2022). Combined Estimation of the Mutual Position of the Master and Slave Vehicle by Ultrasonic Receivers and Gnss-Module Data. Intellekt. Sist. Proizv., 20(1), 4–12. https://doi.org/10.22213/2410-9304-2022-1-4-12

Issue

Section

Articles