Structure of the Information-Measuring Complex for Determining the Mutual Position of the Master and Slave Vehicles and Its Calibration

Authors

  • E. A. Zakharova RSREU named after V.F. Utkin

DOI:

https://doi.org/10.22213/2410-9304-2022-1-13-21

Keywords:

information-measuring complex, slave vehicle, autonomous convoy, calibration, laser scanner

Abstract

The information-measuring complex for determining the mutual position of master and slave vehicles is necessary for the functioning of a robotic vehicle as a part of an autonomous convoy. The complex is based on a spatial array of ultrasonic receivers receiving periodically emitted signals by an active ultrasonic beacon with a built-in receiver of the global navigation satellite positioning system. The structure of information-measuring complex is designed to provide free connection of additional modules of ultrasonic wave receivers, included in the spatial array placed on the slave vehicle, without significant changes in the work of the complex as a whole. The number of required modules depends on the design features of the robotic vehicle, as well as on the required viewing angle of the complex. An active beacon, which is a portable device, is attached to its master, which can be another robotic vehicle, being a member of an autonomous convoy, or a human operator. The coordinates of each ultrasonic receiver in the local coordinate system of the slave robotic vehicle are needed to calculate the position and trajectory of the master by the Kalman filter with smoothing according to the Rauch-Thung-Strubel algorithm. To automatize the coordinate measurement process, a procedure for calibrating the spatial array of ultrasonic receivers has been developed. A distinctive feature of the calibration procedure is obtaining the coordinates of the ultrasonic receiver modules in the local coordinate system of the slave vehicle in automatic mode using a reference rangefinder mounted on the slave vehicle. In the course of experimental studies, it was found that the calibration of the information-measuring complex allowed to reduce the systematic component of the error in assessing the position of the master up to three times.

Author Biography

E. A. Zakharova, RSREU named after V.F. Utkin

Senior Lecturer

References

Зенкевич С. Л., Хуа Ч., Цзяньвень Х. Экспериментальное исследование движения группы мобильных роботов в строю типа «конвой» // Мехатроника, автоматизация, управление. 2018. Т. 19, № 5. С. 331-335. DOI: 10.17587/mau.19.331-335.

Веселов Г. Е., Лебедев Б. К., Лебедев О. Б. Управление движением группы мобильных роботов в колонне // Информатизация и связь. 2021. № 3. С. 7-11. DOI: 10.34219/2078-8320-2021-12-3-7-11.

Yang T. et al. A Leader-following Method Based on Binocular Stereo Vision For Quadruped Robots // 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE. 2019. С. 677-682. DOI: 10.1109/CYBER46603.2019.9066605.

Wang Y. et al. Vision-Based Flexible Leader-Follower Formation Tracking of Multiple Nonholonomic Mobile Robots in Unknown Obstacle Environments // IEEE Transactions on Control Systems Technology. 2019. Т. 28, №. 3. С. 1025-1033, DOI: 10.1109/ TCST.2019.2892031.

Pingali T. R., Lemaire E. D., Baddour N. Ultrasonic Tethering to Enable Side-by-Side Following for Powered Wheelchairs // Sensors. 2019. Т. 19, № 1. С. 109. DOI: 10.3390/s19010109.

Stancovici A. et al. Relative positioning system using inter-robot ultrasonic localization turret // 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE. 2014. С. 1427-1430, DOI: 10.1109/ I2MTC.2014.6860981.

Min B. C., Matson E. T. Robotic follower system using bearing-only tracking with directional antennas // Robot Intelligence Technology and Applications 2. Springer, Cham, 2014. С. 37-58.

Dichgans J., Kallwies J., Wuensche H. J. Robust Vehicle Tracking with Monocular Vision using Convolutional Neuronal Networks // 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, 2020. С. 297-302, DOI: 10.1109/MFI49285.2020.9235213.

Kim J., Jeong H., Lee D. Single 2D lidar based follow-me of mobile robot on hilly terrains // Journal of Mechanical Science and Technology. 2020. Т. 34, № 9. С. 3845-3854. DOI:10.1007/s12206-020-0835-7.

Algabri R., Choi M. T. Deep-Learning-Based Indoor Human Following of Mobile Robot Using Color Feature // Sensors. 2020. Т. 20, № 9. С. 2699. DOI:10.3390/s20092699.

Fries C., Wuensche H. J. Monocular template-based vehicle tracking for autonomous convoy driving // 2014. IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2014. С. 2727-2732. DOI: 10.1109/IROS.2014.6942935.

Локальное позиционирование подводных аппаратов гидроакустической системой с ЛЧМ зондирующими сигналами / В. И. Каевицер и др. // Журнал радиоэлектроники. 2018. № 11. С. 17. DOI: 10.30898/ 1684-1719.2018.11.14.

Частотный метод измерения угловых координат подводного аппарата гидроакустической системой локального позиционирования / В. И. Каевицер и др. // Журнал радиоэлектроники. - 2021. - № 3. DOI: 10.30898/1684-1719.2021.3.1.

Арсентьев В. Г., Криволапов Г. И. Позиционирование объектов в гидроакустической навигационной системе с ультракороткой базой // Вестник СибГУТИ. - 2018. - № 4. - С. 66-75.

Широков В. А. Экспериментальный комплекс для исследования возможностей использования гидроакустических датчиков в системах подводного видения / В. А. Широков, В. Н. Милич // Вестник ИжГТУ имени М. Т. Калашникова. 2021. Т. 24, № 4. С. 54-64. DOI 10.22213/2413-1172-2021-4-54-64.

Goll S., Zakharova E. An active beacon-based leader vehicle tracking system // ACTA IMEKO. 2019. Т. 8, № 4. С. 33-40. DOI:10.21014/ acta_imeko.v8i4.685.

Wendeberg J. et al. Calibration-free TDOA self-localisation // Journal of Location Based Services. 2013. Т. 7. № 2. С. 121-144. DOI:10.1080/17489725. 2013.796410.

Sidorenko J. et al. Self-Calibration for the Time Difference of Arrival Positioning // Sensors. 2020. Т. 20, № 7. С. 2079. DOI:10.3390/s20072079.

Batstone K., Oskarsson M., Åström K. Robust time-of-arrival self calibration with missing data and outliers // 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. С. 2370-2374. DOI: 10.1109/EUSIPCO.2016.7760673.

Hol J. D., Schön T. B., Gustafsson F. Ultra-wideband calibration for indoor positioning //2010 IEEE International Conference on Ultra-Wideband. IEEE, 2010. Т. 2. С. 1-4. DOI: 10.1109/ICUWB.2010.5616867.

Goll S., Zakharova E. Calibration Procedure for the Beacon-based Tracking System to be used for Mobile Robot Convoying //2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2019. С. 1-5. DOI: 10.1109/MECO.2019.8760118.

Published

15.06.2022

How to Cite

Zakharova Е. А. (2022). Structure of the Information-Measuring Complex for Determining the Mutual Position of the Master and Slave Vehicles and Its Calibration. Intellekt. Sist. Proizv., 20(1), 13–21. https://doi.org/10.22213/2410-9304-2022-1-13-21

Issue

Section

Articles