Neural Network Approach to Ranking Factors Affecting Energy Efficiency of Oil Production

Authors

  • S. V. Tsyplenkov Siberian Federal University
  • E. D. Agafonov Siberian Federal University; Reshetnev Siberian State University of Science and Technology
  • D. I. Tsyplenkova Krasnoyarsk State Agrarian University

DOI:

https://doi.org/10.22213/2410-9304-2022-1-22-28

Keywords:

specific power consumption, factor analysis, energy efficiency control system, artificial neural network, artificial oil lift, energy efficiency, intellectual methods

Abstract

The article describes the relevance of the topic, considers the features of approaches to factor analysis of the energy efficiency of the artificial oil lift. Comparative analysis of the approaches used in assessing the current and projected level of energy efficiency in relation to the planned values is carried out. An approach to the ranking of energy efficiency factors based on intelligent methods is proposed. An assessment of the modern possibilities of automating the factor analysis of the energy efficiency of artificial oil lift is given. To develop an effective methodology for the analysis and planning of energy efficiency based on a relevant factor model, an approach to ranking the factors influencing the energy efficiency of artificial lift using an artificial neural network is proposed. When solving the problem, the method of factor analysis of specific power consumption, the L-BFGS algorithm. Various sets of factors are considered, they were ranked according to the shares of significance, the procedure for excluding factors were carried out on the basis of paired correlation dependences between them. A correlation matrix is built for the adjusted set of factors. On the basis of an expert analysis of the results obtained, their relevance to the cause-and-effect relationships manifested in the practice of operating a mechanized well stock was assessed. The use of the proposed approach to factor analysis using an artificial neural network will improve the reliability of control over the energy efficiency of artificial oil lift. The developed model can be included in the algorithmic and software and hardware support of a promising automated energy efficiency control system and can be used in decision-making by specialists who plan, monitor and predict energy efficiency indicators and assess the results of the implementation of energy-saving measures.

Author Biographies

S. V. Tsyplenkov, Siberian Federal University

Master Student

E. D. Agafonov, Siberian Federal University; Reshetnev Siberian State University of Science and Technology

DSc in Engineering, Associate Professor

D. I. Tsyplenkova, Krasnoyarsk State Agrarian University

Assistant Professor

References

«РН-Уватнефтегаз» сэкономил энергоресурсов на 222 млн рублей и перешел на цифровой контроль расхода электроэнергии. URL: https://www.rosneft.ru/press/news/item/200257 (дата обращения 01.11.2021).

Шишкин А. Н. Повышение энергоэффективности в ОАО «НК Роснефть» // Материалы II Международного форума ENES Expo. 2013. URL: http://enes-expo.ru/docs/prezentatsii_dlya_programmy/ 21112013/Rosneft.pdf.

Зуев А. С. Стратегия повышения энергоэффективности компании ОАО «НК «Роснефть» // Электроэнергия. Передача и распределение. 2016. № 3. С. 30-33.

Чинкова Н. Газпромнефть: программа энергоменеджмента // Нефтегазовая вертикаль. 2011. № 21.

Vargas R. E. V. et al. A realistic and public dataset with rare undesirable real events in oil wells // Journal of Petroleum Science and Engineering. 2019. Т. 181. С. 106223.

Koroteev D., Tekic Z. Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future // Energy and AI. 2021. Т. 3. С. 100041.

Syed F. I. et al. Artificial lift system optimization using machine learning applications // Petroleum. 2020.

Цыпленков С. В., Агафонов Е. Д. Концепция комплексной системы контроля энергоэффективности механизированной добычи нефти // Известия высших учебных заведений. Проблемы энергетики. 2021. Т. 23, № 4. С. 180-196.

Погружные электродвигатели с повышенным напряжением - двойной эффект без инвестиций / C. Б. Якимов, М. Н. Каверин, А. В. Цыбин, Д. А. Косилов, В. П. Тарасов // Оборудование и технологии для нефтегазового комплекса. 2012. № 3. С. 75.

Троицкий-Марков Т. Е., Сенновский Д. В. Принципы построения системы мониторинга энергоэффективности // Мониторинг. Наука и безопасность. 2011. Т. 4. С. 34-39.

Журавлев В., Кибирев Е., Музычук П. Энергосбережение рубль бережет // Нефтегазовая вертикаль - технологии и сервис. 2017. № 9. С. 20-82.

Аналитическая информационная система / Вейнблат А. В. и др. // Энергоэффективностъ нефтегазового предприятия. 2018.

Музычук П. С. Повышение энергоэффективности эксплуатации механизированного фонда скважин // Электронный научный журнал «Neftegaz.ru». 2019. № 10. URL: https://magazine.neftegaz.ru/articles/dobycha/500661-povyshenieenergoeffektivnosti-ekspluatatsii-mekhanizirovannogo-fonda-skvazhin.

He L. I. U. et al. Development and prospect of separated zone oil production technology // Petroleum Exploration and Development. 2020. Т. 47, № 5. С. 1103-1116.

Liu D. C., Nocedal J. On the limited memory BFGS method for large scale optimization // Mathematical programming. 1989. Т. 45, № 1. С. 503-528.

Тарасов В. П., Куряев С. В., Голубь И. М. Использование специализированного ПО для расчета энергопотребления на механизированном фонде скважин // Инженерная практика. 2016. № 3. С. 22-26.

Published

15.06.2022

How to Cite

Tsyplenkov С. В., Agafonov Е. Д., & Tsyplenkova Д. И. (2022). Neural Network Approach to Ranking Factors Affecting Energy Efficiency of Oil Production. Intellekt. Sist. Proizv., 20(1), 22–28. https://doi.org/10.22213/2410-9304-2022-1-22-28

Issue

Section

Articles