Optimizing Model of the Account of Conditions Loading the Drive Under Different Conditions of Operation of Wind-Electric Installation
DOI:
https://doi.org/10.22213/2410-9304-2022-1-43-48Keywords:
optimizing model, function extreme, delay, vibration, wind turbine, rotor systemAbstract
An optimizing model of dynamic links of rotary systems of a wind power plant is described, which would cover control not only using the angle of rotation of the blades of an electric generator, but also take into account the conditions of vibration loading of the drive under different operating conditions of the power unit, as one of the subtasks in demand for further development of mathematical algorithms for dynamic behavior of the system in order to modify automated control of a wind power plant, which reduces the vibrations of all elements of rotary systems under conditions of drive loading in the operating mode of the unit, which contributes to improving the reliability of the components of modern wind turbines. The analysis of stability of a control system wind-power by installation on the basis of the results of the description of the characteristic equation of transfer functions of model developed for the decision of a problem of increase of a control efficiency wind-electric by the unit is made. The problem of function extremes definition within the structure of its variables based on the first and second function derivatives in terms of chosen argument taking into account the requirement of the sum minimum of squares of no viscous variations of twisting moment error control is solved. The block diagram of transfer functions of dynamic links rotor systems on the basis of the optimized model of a control system wind-electric unit is made. Modeling of automatic control system of a rotor wind turbine angular speed on the basis of the optimized function which covers control not only by means of blades rotation angle of the electric generator, but also considers conditions of drive loading under different conditions of power unit operation is executed. The analysis of angular speed delay regulation of the wind wheel on the basis of optimizing model of wind-electric unit control is made, recommendations of practicability of the further researches within the limits of the method for timely preparation of operating decision-making system are given.References
Шнеерсон Р. М. Разработка гибридного ветроэнергетического комплекса для электроснабжения удаленных потребителей Мурманской области // Вестник науки Сибири. 2015. № 15. С. 55-58.
Пионкевич В. А. Математическое моделирование ветротурбины для ветроэнергетической установки с асинхронным генератором методом частотных скоростных характеристик // Вестник ИрГТУ. 2016. № 3. С. 83-88.
Степанов С. Ф., Павленко И. М., Ербаев Е. Т. Обеспечение эффективной работы мультимодульной ветроэлектростанции при изменении скорости ветра и нагрузки // Современные проблемы науки и образования. 2013. № 6. С. 93-94.
Суяков С. А. Проблемы интеграции ветроустановок в единую энергетическую систему России // Инженерный вестник Дона. 2014. № 3. С. 10-23.
Emadifar R., Tohidi D., Eldoromi M. Controlling Variable Speed Wind Turbines Which Have Doubly Fed Induction Generator by Using of Internal Model Control Method // International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2016. No. 5. Pp. 3464-3471.
Balamurugan N., Selvaperumal S.Intelligent controller for speed control of three phase induction motor using indirect vector control method in marine applications // Indian journal of Geo Marine Sciences. 2018. No. 47. Pp.1068-1074.
Vijayalaxmi B., Bheema K. Individual Pitch Control of Variable Speed Wind Turbines Using Fuzzy Logic with DFIG // International Journal of research in advanced engineering technologies. 2016. No. 5. Pp. 45-52.
Subbaian V., Sasidhar S. Maximum energy capture of variable speed variable pitch wind turbine by using RBF neural network and fuzzy logic control // International Research Journal of Engineering and Technology. 2015. No. 2. Pp. 493-500.
Haiying D., Lixia Y., Guohan Y., Hongwei L. Wind Turbine Active Power Control Based on Multi-Model Adaptive Control // International Journal of Control and Automation. 2015. No. 8. Pp. 273-284.
Серебряков Р. А. Перспективы развития ветроэнергетики // Точная наука. 2021. № 110. С. 2-13.
Серебряков Р. А. Теоретические основы математического моделирования вихревой ветроэнергетической установки // Точная наука. 2021. № 110. С. 23-30.
Многоагрегатная ветроэнергетическая установка для районов с низким ветровым потенциалом / С. С. Доржиев, Е. Г. Базарова, В. В. Пилипков, М. И. Розенблюм // Агротехника и энергообеспечение. 2021. № 2 (31). С. 45-52.
Буяльский В. И. Методы повышения эффективности управления ветроэлектрической установкой на базе учета вибрационной нагруженности привода при разных условиях эксплуатации энергоагрегата // Интеллектуальные системы в производстве. 2021. Т. 19, № 3. С. 74-81.
Крутов В. И. Основы теории автоматического регулирования. 2-е изд., перераб. и доп. М. : Машиностроение, 1984. 348 с.
Буяльский, В. И. Комбинированный метод управления ветротурбиной // Энергетик. 2016. № 4. С. 18-20.