Using the Yolov5 Neural Network to Recognize the Presence of Personal Protective Equipment

Authors

  • S. A. Filichkin Kalashnikov ISTU
  • S. V. Vologdin Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2410-9304-2022-2-61-67

Keywords:

Computer vision, artificial intelligence, pattern recognition, neural network, image markup, YOLO

Abstract

The article discusses the application of the YOLO neural network for the automatic detection and identification of personal protective equipment for enterprise personnel in digital images. A comparative analysis of various YOLOv5 network architectures is given, depending on the neural network learning rate and recognition accuracy. The tools for training a neural network in Python within the Google Colab environment, which allows efficient use of remote computing power of GPUs, are considered. An example of network training based on collected dataset with six classes for recognizing the presence of personal protective equipment (with a mask; without a mask; the mask is worn incorrectly; with a head protector; without a head protector; special clothing) is considered. The settings of the YOLOv5 neural network and recommendations for improving object recognition by supplementing the dataset with certain condition images are described. Four variants of network training and different number of epochs were produced using the YOLOv5s and YOLOv5l architecture. The optimal neural network architecture and the number of required epochs has been selected. The concept of average accuracy (Mean Average Precision - mAP) is considered and a comparative analysis of the prediction accuracy from the selected network architecture and settings is given. A practical example of recognizing the presence of personal protective equipment in digital images using a trained YOLOv5 neural network is given. On average, the recognition accuracy is 0.7, which is not a bad result for solving this class of problems. The paper deals with issues of improving the accuracy of object recognition. Plans for the detection of previously detected and new classes of personal protective equipment are given, as well as confirmation of the fact that the personnel of enterprises have passed the regulatory procedures based on digital video sequence.

Author Biographies

S. A. Filichkin, Kalashnikov ISTU

Master Degree student

S. V. Vologdin, Kalashnikov ISTU

DSc in Engineering, Associate Professor

References

Шмаглит Л. А., Голубев М. Н. Использование информации о цвете в алгоритме выделения лиц на изображениях // Материалы XX Международной конференции по компьютерной графике и зрению «ГрафиКон’2010». 2010. C. 331-332.

Визильтер Ю. В. Обработка и анализ изображений в задачах машинного зрения. М. : ФИЗМАТКН, 2010. 245 c.

Lin T.-Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollar P. and Zitnick C. L. Microsoft coco: Common objects in context // In European Conference on Computer Vision. 2014. Pp. 740-755.

Филичкин С. А. Применение нейронных сетей для распознавания поведенческих функций человека // Экология и безопасность жизнедеятельности : сборник статей XXI Международной научно-практической конференции. Пенза: Пензенский государственный аграрный университет, 2021. С. 206-210.

Elian F., Hariadi F. I. and Arsyad M. I. Implementation of computer vision algorithms for position correction of chip-mounter machine // 2017 International Symposium on Electronics and Smart Devices (ISESD). 2017. Pp. 90-94. DOI 10.1109/ISESD.2017.8253311.

Redmon J., Divvala S., Girshick R. and Farhadi A. You Only Look Once: Unified, Real-Time Object Detection // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 779-788. DOI: 10.1109/CVPR.2016.91.

Официальный репозиторий YOLOv5. URL: https://github.com/ultralytics/yolov5 (дата обращения: 26.02.2022).

Ворожцова Н. А., Вологдин С. В. Подготовка набора данных для распознавания показаний с фотографий лицевых панелей приборов учета электроэнергии // Вестник Российского нового университета. Серия: Сложные системы: модели, анализ и управление. 2020. № 4. С. 121-126. DOI 10.25586/RNU.V9187.20.04. P.121.

Vorozhtsova N., Shushkov I., Vologdin S. System approach to development of Intellectual Information Mobile System for Electric Power Metering // E3S Web of Conferences, Irkutsk, 27-29 мая 2019 года. Irkutsk: EDP Sciences. 2019. 114. P. 01004. DOI 10.1051/e3sconf/201911401004.

YaŞar F. G., KusetoĞullari H. Underwater human body detection using computer vision algorithms // 2018 26th Signal Processing and Communications Applications Conference (SIU). 2018. DOI: 10.1109/SIU.2018.8404305.

Sanket J. Mankar, Manoj Demde, Prashant Sharma. Design of computer vision intelligent system for lane detection // 2016 Online International Conference on Green Engineering and Technologies (IC-GET). 2016. Pp. 1-3. DOI: 10.1109/GET.2016.7916843.

Боков П. А., Кравченя П. Д. Экспериментальный анализ точности и производительности разновидностей архитектур YOLO для задач компьютерного зрения. М. : Техносфера, 2018. 47 c.

Senthilkumaran N., Rajesh R. Edge Detection Techniques for Image Segmentation // International Journal of Recent Trends in Engineering. 2009. Vol. 1, No. 2. Pp. 250-254.

Sowmya B., Sheelarani B. Color Image Segmentation Using Soft Computing Techniques // International Journal of Soft Computing Applications. 2009. Issue 4. pp. 69-80.

Umesh Sehgal Edge detection techniques in digital image processing using Fuzzy Logic // International Journal of Research in IT and Management. 2011. Vol.1, Issue 3. Pp. 61-66.

Yu, X, Bui, T.D. Robust Estimation for Range Image Segmentation and Reconstruction // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994. Vol. 16, Issue 5. pp. 530-538.

Published

25.06.2022

How to Cite

Filichkin C. А., & Vologdin С. В. (2022). Using the Yolov5 Neural Network to Recognize the Presence of Personal Protective Equipment. Intellekt. Sist. Proizv., 20(2), 61–67. https://doi.org/10.22213/2410-9304-2022-2-61-67

Issue

Section

Articles