Automated Method of Monitoring the Quality Surface of Glass And Mirrors by Means of Machine Vision Algorithms for Gyroscopic Devices

Authors

  • I. R. Kadyrov Udmurt State University
  • A. V. Krivov Kalashnikov ISTU
  • R. V. Melnikov Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2410-9304-2022-2-68-77

Keywords:

surface inspection, defect, machine vision, sensing element, solid-state wave gyroscope

Abstract

The paper analyzes the existing devices for surface quality control of products. A variant of machine vision system application in terms of products using glass surfaces with high requirements to the quality of manufacturing are considered. Ready-made solutions are considered and analyzed, their characteristics, advantages and disadvantages are described. The layout of a workstation for obtaining images of the product surface for subsequent software processing was developed. An example of automatic acquisition of surface images for products with complex geometrry is implemented. An algorithm and tool for detecting surface defects and classifying them, by image processing, using specially developed software, is described. The described method of surface assessment is also capable of detecting defects in various surfaces requiring high quality production of these products, and the main limitation is the optical method of obtaining a picture of the surface to be examined. The algorithm is able to work with images of medium and high quality, which allows to use this method of surface assessment with already existing systems that do not have an algorithm for surface assessment, which simplifies the possibility of implementing this system. Combination with other methods of nondestructive testing of products, that allow to obtain surface images, internal area and hidden cavities, it will make possible to analyze the quality of products in a complex way. The ue of machine vision is relevant due to its features, such as: speed of surface quality control, as well as evaluation accuracy. A machine vision system can reject parts much faster and more reliably than a human and can be used as a tool production automation.

Author Biographies

I. R. Kadyrov, Udmurt State University

Postgraduate

A. V. Krivov, Kalashnikov ISTU

Master Degree student

R. V. Melnikov, Kalashnikov ISTU

Postgraduate

References

Gireesh S.N., Arun G., Pandian P.S., Sundararajan T., Sachin S.G. Design of Inertial Class Gyroscope Resonator With Ultrahigh Quality Factor for Interplanetary Space Missions. Jan 17.2020.

Маслов Д. А. Идентификация параметров гироскопа с цилиндрическим резонатором при учете влияния нелинейности на амплитуду возбуждающего воздействия // Машиностроение и инженерное образование. 2017. № 1 (50). С. 24-31.

Delhaye F. HRG by Safran - The game-changing technology / F. Delhaye // In Proceedings of the IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) 2018. Moltrasio, Italy, 26-29 March 2018. С. 1-4. DOI: 10.1109/ISISS.2018.8358163.

Шишаков К. В. Твердотельные волновые гироскопы: волновые процессы, управление, системная интеграция : монография. Ижевск : Изд-во ИжГТУ имени М. Т. Калашникова, 2018. 264 с.

Трутнев Г. А., Перевозчиков К. К., Назаров С. Б. Система съема и способы измерения колебаний резонатора твердотельного волнового гироскопа // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2020. № 1. С. 50-63.

Nashwa El-Bendary, Esraa El Hariri, Aboul Ella Hassanien, Amr Bard Using machine learning techniques for evaluating tomato ripeness // Expert Systems with Applications Volume 42, Issue 4, 2015, P.1892-1905. DOI:10.1016/j.eswa.2014.09.057.

Fergus P., Hussain A., Hignett David, Al- D. Jumeily, Khaled Abdel-Aziz, Hani Hamdan A machine learning system for automated whole-brain seizure detection // Applied Computing and Informatics. Volume 12, Issue 1, 2016, P. 70-89. DOI: 10.1016/j.aci.2015.01.001.

Nagdev Amruthnath, Tarun Gupta A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance // 2018 5th International Conference on Industrial Engineering and Applications. 2018. P. 355-361. DOI: 10.1109/ IEA.2018.8387124.

Пешехонов В. Г. Современное состояние и перспективы развития гироскопических систем // Гироскопия и навигация, 2011, № 1.

Новое поколение ИНС на основе ВТГ / С. Негри, Э. Лабарр, К. Линьон, Э. Брунштейн, Э. Салаён // Гироскопия и навигация. Т. 24. № 1 (92). 2016. С. 49-59. DOI: 10.17285/0869-7035.2016.24.1.049-059.

Jeanroy A., Bouvet A., Remillieux G. HGR and marine applications, Gyroscopy and navigation. 2014. T. 5, № 2. P. 67-74.

Климов Д. М. Журавлев В. Ф., Жбанов Ю. К. Кварцевый полусферический резонатор (Волновой твердотельный гироскоп). М. : ФГБУН ИПМех им. А. Ю. Ишлинского РАН, 2017. 193 с.

Маслов Д. А. Идентификация и компенсация погрешностей волнового твердотельного гироскопа с электростатическими датчиками управления // Машиностроение и инженерное образование. 2018. № 1. С. 20-26.

Климов Д. М., Журавлев В. Ф., Жбанов Ю. К. Кварцевый полусферический резонатор (Волновой твердотельный гироскоп). М. : Ким Л. А., 2017. 194 с.

Серегин С. В. О возможности возникновения радиальных форм колебаний кольцевых элементов // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2018. Т. 4, № 1. С. 132-143.

Published

25.06.2022

How to Cite

Kadyrov И. Р., Krivov А. В., & Melnikov Р. В. (2022). Automated Method of Monitoring the Quality Surface of Glass And Mirrors by Means of Machine Vision Algorithms for Gyroscopic Devices. Intellekt. Sist. Proizv., 20(2), 68–77. https://doi.org/10.22213/2410-9304-2022-2-68-77

Issue

Section

Articles