Modelling and Analysis of Piezoelectric Energy Storage System Operation by Means of Software Environment Matlab/Simulink
DOI:
https://doi.org/10.22213/2410-9304-2022-3-24-33Keywords:
Matlab/Simulink, vibration, piezoid, energy collection, modellingAbstract
The interest among researches to electric energy production from vibration energy transformation has been increased recently due to the need of connection of special electronic equipment to the energy source, such as remote sensing system, enabling maintenance and battery change at specified time cost reduction. High energy thickness and sure vibration characteristics of piezoelectric materials increased the application area where low power is required. Energy collection from piezoids is a technology that transforms available environment energy into electric one. Vibration energy collection is preferred since various amplitude and frequency vibrations are available in environment. Vibration energy collectors of piezoelectrical type are widely used due to their simplicity of operation and compatibility with small electromechanical system production technology. A software Matlab / Simulink was used for modelling and analysis of piezoelectric system operation for the present research. The program allowed to develop a model of piezoelectric system. The results of modelling showed the possibility of application of such systems for the required energy production in low-power equipment. This is especially important that these piezoelectrical technologies can be applied for electric energy supply of off-grid individual consumers in the remote districts of the Russian Federation. It is possible since technologies are suitable for application during battery charge, which is especially important for individual household and private houses in various districts of our country.References
Shad Roundy, Paul Kenneth Wright, Jan M. Rabaey [Energy scavenging for wireless sensor networks]. Springer, Boston, 2004, 212 p.
Paradiso J. A. and Starner T., "Energy scavenging for mobile and wireless electronics," in IEEE Pervasive Computing, vol. 4, no. 1, pp. 18-27, Jan.-March 2005. DOI: 10.1109/MPRV.2005.9.
Starner T. [Human-powered wearable computing] in IBM Systems Journal, vol. 35, no. 3.4, pp. 618-629, 1996. DOI: 10.1147/sj.353.0618.
Beeby S. et al. [A micro electromagnetic generator for vibration energy harvesting. Journal Micromech Microeng]. 2007, vol. 17, no 7, pp. 1257-1265.
Васильев И., Чуприн А. Разработка пьезоэлектрического генератора тока для обеспечения автономным питанием грузовых вагонов и платформ // Нано индустрия. 2016. № 5 (67). С. 86-92. DOI: https://10.22184/1993-8578.2016.67.5.86.92.
Uchino K. [Piezoelectric Energy Harvesting Systems-Essentials to Successful Developments]. Energy Technology, 2017, vol. 6 (5), pp. 829-848. DOI: https://doi.org/10.1002/ente.201700785.
Huet F., et al. [Vibration energy harvesting device using P(VDF-TrFE) hybrid fluid diaphragm]. Sensors and Actuators A: Physical, Elsevier, 2016, vol. 247, pp.12-23. DOI: 10.1016/j.sna.2016.05.029.
Cui X., Teng M. and Hu J., [PSPICE-Based Analyses of the Vibration Energy Harvester System with Multiple Piezoelectric Units]. in Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 3, pp. 246-250, 2015, DOI: 10.1109/CJECE.2015.2431312.
Богуш М. В. Проектирование пьезоэлектрических датчиков на основе пространственных электротермоупругих моделей. М. : Техносфера, 2014. 312 с. URL: www.piezoelectric.ru.
Гриценко А., Никифоров В., Щеголева Т. Состояние и перспективы развития пьезоэлектрических генераторов // Компоненты и технологии. 2012. № 9. С. 63-68.
Zhang Y. L., et al. Electrostatic energy harvesting device with dual resonant structure for wideband randomvibration sources at low frequency. Review of Scientific Instruments, 2016, vol. 87: 125001, pp. 1-8.
Maghsoudi Nia E., et al. [Design of a pavement using piezoelectric materials]. Materials science and engineering technology, John Wiley & Sons, 2019, vol. 50, no 3, pp. 320-328. DOI: https://doi.org/10.1002/mawe.201900002
Ghazanfarian, Jafar, Mohammad M. Mohammadi, and Kenji Uchino. [Piezoelectric Energy Harvesting: A Systematic Review of Reviews]. Actuators, 2021, Vol. 10, no. 12: 312, pp. 1-30 https://doi.org/10.3390/act10120312.
Erturk A., Inman D. [Piezoelectric Energy Harvesting], 1st ed.: John Wiley & Sons: Hoboken, NJ, USA, 2011, 416 P.
Gareh S., et al. [Optimization of the Compression-Based Piezoelectric Traffic Model (CPTM) for Road Energy Harvesting Application].International Journal of Renewable Energy Research, 2019, vol. 9, no 3, pp. 1272-1282. DOI: https://doi.org/10.20508/ijrer.v9i3.9509.g7703
Chen N., et al. [A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit]. Sensors and Actuators A: Physical, 2017, vol. 254, pp. 134-144. DOI: 10.1016/j.sna.2016.12.006
Yalu Pei, Yilun Liu, Lei Zuo [Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting]. Journal of Sound and Vibration, Volume 423, 2018, pp. 1-17, https://doi.org/10.1016/j.jsv.2018.02.041
Исполнительные устройства и системы для микроперемещений / А. А. Бобцов, В. И. Бойков, С. В. Быстров и др. СПб. : Университет ИТМО, 2017. 134 с.
Hillyard, Daniel C et al. [Development of an Energy-Harvesting Shoe]. Environmental Science, 2014.
Анализ и моделирование автономной фотоэлектрической системы с использованием среды matlab/simulink / Л. М. Абдали, Х. А. Исса, К. А. Али, В. В. Кувшинов, Э. А. Бекиров // Строительство и техногенная безопасность. 2021. № 21(73). C. 97-105. DOI: https://doi.org/10.37279/2413-1873-2021-21-97-105.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Фаиз Муса Аль-Руфаи, Борис Анатольевич Якимович, Владимир Владиславович Кувшинов, Аднан К Аль-Саиди, Д Ф Бордан
This work is licensed under a Creative Commons Attribution 4.0 International License.