Development of Parallel Algorithms for Probabilistic Models Learning for Web Application Testing
DOI:
https://doi.org/10.22213/2410-9304-2022-3-94-103Keywords:
probabilistic model, Bayesian networks, Broyden’s method, Levenberg-Marquardt method, Bayes-Dirichlet metricAbstract
In the current conditions of testing methods and algorithms development to combine individual test components in the form of a hierarchical model reflecting the connections and states between these components, as well as allowing to evaluate the probability of a transition between model states in the event of information about the successful implementation of a certain test to detect a program error is of particular importance. Existing approaches do not allow optimal adjustment of model parameters, as well as qualitative calculation and establishment of directions of connections between individual components of this model. The scientific study considered the possibility of using effective numerical methods to solve the problem of training probabilistic models built on the basis of Bayesian networks to solve the main problems of testing web applications. The main approaches to create parallel algorithms implementing the main functional capabilities underlying the implementation of the procedure for training test models are considered. Analysis of the developed training algorithms effectiveness for testing certain groups of program errors allowing the most optimal parameters of the DBS model was made, as well as a justification for their use in distributed data processing systems. We have developed algorithmic solutions for Jacobi and Hesse matrices calculation optimization based on Cannon and Fox algorithms. The process of testing errors of web application is simulated and presented in the form of a dynamic Bayesian network obtained from the results of the structure and parameters learning procedure. The validity of all theoretical results is confirmed by a large number of experimental results proving the validity of the put forward assumptions, testing methods and models presented in the form of dynamic Bayesian networks.References
Азарнова Т. В., Азарнова Т. В. Динамические байесовские сети как инструмент тестирования веб-приложений методом фаззинга // Математические методы распознавания образов: тезисы докладов 19-й Всероссийской конференции с международным участием, г. Москва 2019 г. М. : Российская академия наук, 2019. С. 379-384.
Robinson R. W. Counting unlabeled acyclic digraphs / R.W. Robinson // Lect. Notes Math, 1977. No 622. Pp. 28-43.
Russel S. Arti cial Intelligence: A Modern Approach / S.Russel, P. Norvig. Boston: Prentice Hall, 2009. 1095 p.
Pearl J. Causality: Models, Reasoning and Inference /j. Pearl. N.Y.: Cambridge University Press, 2009. 484 p.
Дэнис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений / пер. с англ. М. : Мир, 1988. 440 с.
Heckerman D. Learning discrete Bayesian networks / D. Heckerman, D. Geiger, D. Chickering // Machine Learning, 1995. Vol. 20. Pp. 197-243.
Chickering D. M. A Transformational Characterization of Equivalent Bayesian Network Structures / D.M. Chickering // Proc. UAI. NY: Morgan Kaufman, 1995. Pp. 87-98.
Spirtes P. Causation, Prediction and Search / P. Spirtes, C. Glymour, R. Sheines. Cambridge: MIT Press, 2000. 568 p.
Вержбицкий В. М. Численные методы. Линейная алгебра и нелинейные уравнения / В.М. Вержбицкий. М. : Оникс 21 век, 2005. 432 с.
Гилл Ф., Мюррей У., Райт М. Практическая оптимизация / пер. с англ. М. : Мир, 1985. 509 с.
Васин В. В., Пересторонина Г. Я. Метод Левенберга - Марквардта и его модифицированные варианты для решения нелинейных уравнений с приложением к обратной задаче гравиметрии // Труды института математики и механики УрО РАН. 2011. Т. 17, № 2. С. 53-61.
Голуб Дж., Ван Лоун Ч. Матричные вычисления / пер. с англ. М. : Мир, 1999. 549 с.
Магнус Я. Р., Нейдеккер Х. Матричное дифференциальное исчисление с приложениями к статистике и эконометрике / пер. с англ. М. : Физматлит, 2002. 496 с.
Гергель В. Высокопроизводительные вычисления для многоядерных систем. М. : Издательство Московского университета, 2010. 544 с.
Воеводин В. В., Воеводин Вл. В. Параллельные вычисления. СПб. : БХВ-Петербург, 2002. 608 с.
Zaharia M. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing / M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. McCauley, M. Franklin, S. Shenker, I. Stoica // NSDI, 2012. Pp. 1-15.
Таненбаум Э., Ванн Сеен М. Распределенные системы. Принципы и парадигмы. СПб. : Питер, 2003. 877 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Павел Валерьевич Полухин
This work is licensed under a Creative Commons Attribution 4.0 International License.