Analysis Study and Comparison of Different Maximum Power Point Techniques for Solar Photovoltaic Systems

Authors

  • L. M. Abdali Sevastopol State University
  • H. A. Issa Sevastopol State University
  • M. N. Al-Maliki Sevastopol State University
  • B. A. Yakimovich Sevastopol State University
  • V. V. Kuvshinov Sevastopol State University

DOI:

https://doi.org/10.22213/2410-9304-2022-3-104-113

Keywords:

solar energy, photovoltaic cell, photovoltaic module, Simulink, smart power grid

Abstract

The use of control systems for photovoltaic installations significantly increases the generation of electrical energy and the efficiency of their use. Solar power supply systems are highly dependent on various climatic factors and therefore there is a real need to use automatic control systems for their various energy parameters, such as current, voltage and power. One of the promising systems for monitoring the energy characteristics of photovoltaic installations is MPPT systems (systems for monitoring maximum power points). This article explores the impact of various maximum power point (MPP) tracking methods applied to photovoltaic systems. This work uses methods like climb-to-top (HC), incremental conduction (IC), and perturbation and observation (P&O). A model of a photovoltaic module and a DC boost converter with various TMM “machine theory” methods were modeled using Matlab software . A joint simulation between Matlab Simulink software packages is used to establish the TMM method. Co-simulation is performed to take advantage of each program to process certain parts of the system. The response of various TMM methods is evaluated in rapidly changing weather conditions. The results show that IC performed best among the compared TMM methods, followed by P&O and HC TMM methods in both dynamic response and steady-state over most of the normal operating range. The incremental conduction method has the advantage of extracting more power compared to perturbation and observation. Method and climb-to-top method and are therefore more competitive than the other two methods in a photovoltaic system.

Author Biographies

L. M. Abdali, Sevastopol State University

Postgraduate Student

H. A. Issa, Sevastopol State University

Postgraduate Student

M. N. Al-Maliki, Sevastopol State University

Postgraduate Student

B. A. Yakimovich, Sevastopol State University

DSc in Engineering, Professor

V. V. Kuvshinov, Sevastopol State University

PhD in Engineering

References

Javed, K.; Ashfaq, H.; Singh, R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems.Int. J. Green Energy 2020, 17, 48-61.

Abo-Elyousr, F.K.; Abdelshafy, A.M.; Abdelaziz, A.Y. MPPT-Based Particle Swarm and Cuckoo Search Algorithms for PV Systems. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Cham, Switzerland, 2020; pp. 379-400.

Amiry H. Design and implementation of a photovoltaic I-V curve tracer: Solar modules characterization under real operating conditions. Energy Conversion and Management, 2018, 169, pp. 206-216.

Aouchiche, N.; Aitcheikh, M.S.; Becherif, M.; Ebrahim, M.A. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach. Sol. Energy 2018, 171, 593-603.

Abd Ali, L. M., Al-Rufaee, F. M., Kuvshinov, V. V. et al. Study of Hybrid Wind-Solar Systems for the Iraq Energy Complex. Appl. Sol. Energy, 2020, vol. 56, no. 4, pp. 284-290. https://doi.org/10.3103/S0003701X20040027.

Bana S. and Saini R.P. A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems. Energy Reports, 2016, 2, pp. 171-187.

Kuvshinov, V.V., Abd Ali, L.M., Morozova, N.V. et al. Experimental Studies on Receiving Surfaces of Flat Solar Collectors. Surf. Engin. Appl.Electrochem. vol. 57, no. 6, pp.715-720 (2021).https://doi.org/10.3103/S1068375521060089.

Интеллектуальная система управления, используемая при работе ветроэлектрических установок / Л. М. Абдали, Ф. М. Аль-Руфаи, Б. А. Якимович, В. В. Кувшинов // Вестник ИжГТУ имени М. Т. Калашникова. 2021. Т. 24, № 1. С. 102-112. DOI: 10.22213/2413-1172-2021-1-102-112.

Zhang Q., Ning Xu., Ye Z. MMPT control method for photovoltaic power supply based on improved variable-step hill-climbing method. Electric Engineering, vol. 2, pp. 55-57, 2018.

Chatterjee A., Keyhani A., Kapoor D. Identification of Photovoltaic Source Models. Energy Conversion, IEEE Transactions on, 2011, vol. PP, pp. 1-7.

Анализ и моделирование автономной фотоэлектрической системы с использованием среды matlab/simulink / Л. М. Абдали, Х. А. Исса, К. А. Али, В. В. Кувшинов, Э. А. Бекиров // Строительство и техногенная безопасность. - 2021. № 21 (73). C. 97-105. DOI: https://doi.org/10.37279/2413-1873-2021-21-97-105.

Belkaid, A.; Colak, I.; Kayisli, K. Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng. 2017, 99, pp. 839-846.

Ram, J. Prasanth, T. Sudhakar Babu, and N. Rajasekar. "A comprehensive review on solar PV maximum power point tracking techniques." Renewable and Sustainable Energy Reviews 67, 2017, pp.826-847.

Sachit M.S., Shafri H.Z.M., Abdullah A.F., Rafie A.S.M.Combining Re-Analyzed Climate Data and Landcover Products to Assess the Temporal Complementarity of Wind and Solar Resources in Iraq. Sustainability, 2021, 14(1), 388.

Mitrofanov, S. V., Baykasenov, D. K., & Suleev, M. A. Simulation model of autonomous solar power plant with dual-axis solar tracker. In 2018 International Ural Conference on Green Energy,2018, (pp. 90-96). IEEE.

Fazal, M.R.; Kamran, M.; ul Haq, I.; Abbas, Z.; Ayyaz, M.N.; Mudassar, M. Modified Perturb and Observe MPPT algorithm for partial shading conditions.Int. J. Renew. Energy Res.2019, 9,721-731.

Ibrahim H. and N. Anani. Variations of PV module parameters with irradiance and temperature. Energy Procedia, 2017, 134, pp. 276-285.

Yin O.W. and B.C. Babu. Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. Optik, 2018, 169, pp. 48-61.

Техника искусственного интеллекта для производства энергии и автоматизация управления гибридной солнечно-ветро-дизельной энергетической системой / Л. М. Абдали, К. А. Али, В. В. Кувшинов, Э. А.Б екиров, Н. В. Коровкин // Строительство и техногенная безопасность. 2021. № 22 (74). С. 91-100.

H. Li, D. Yang, and W. Su, “An overall distribution particle swarm optimization mppt algorithm for photovoltaic system under partial shading,” IEEE Transactions on Industrial Electronics, vol. 1, no. 1, pp. 265-275, 2018.

Khatib, Tamer, and Wilfried Elmenreich. Modeling of photovoltaic systems using Matlab: Simplified green codes. John Wiley & Sons, 2016.

Pathy, S.; Subramani, C.; Sridhar, R.; Thentral, T.; Padmanaban, S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies 2019, 12, 1451.Senol M., Abbaso˘ glu S., Kukrer O., Babatunde A. A guide in installing large-scale PV power plant for self-consumption mechanism. Sol. Energy, 2016, 132, pp. 518-537.

Layth M. Abd Ali, L M., Ali, Q. A., Klačková, I., Issa, H. A., Yakimovich, B. A. and Kuvshimov, V. (2021) Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment. Acta Montanistica Slovaca, Volume 26 (4), 773-783 DOI: https://doi.org/10.46544/AMS.v26i4.14.

Xuan Hieu Nguyen, Minh Phuong Nguyen. Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environmental Systems Research, 2015, 4, 24.

Моделирование режимов работы фотоэлектрической системы / Л. М. Абдали, Х. Д. Мохаммед,Б. А. Якимович, В. В. Кувшинов, Н. В. Коровкин, Д. Ф. Бордан // Вестник ИжГТУ имени М. Т. Калашникова. 2021. Т. 24, № 3. С. 78-87. DOI: 10.22213/2413-1172-2021-3-78-87.

Li H., Yang D., Su W. An overall distribution particle swarm optimization mppt algorithm for photovoltaic system under partial shading. IEEE Transactions on Industrial Electronics, 2018, vol. 1, no. 1, pp. 265-275.

Awad M, Ibrahim AM, Alaas ZM, El-Shahat A and Omar AI (2022), Design and analysis of an efficient photovoltaic energy-powered electric vehicle charging station using perturb and observe MPPT algorithm. Front. Energy Res. 10:969482. doi: 10.3389/fenrg.2022.969482

Published

28.09.2022

How to Cite

Abdali Л. А., Issa Х. И., Al-Maliki М. К., Yakimovich Б. А., & Kuvshinov В. В. (2022). Analysis Study and Comparison of Different Maximum Power Point Techniques for Solar Photovoltaic Systems. Intellekt. Sist. Proizv., 20(3), 104–113. https://doi.org/10.22213/2410-9304-2022-3-104-113

Issue

Section

Articles