Maximum Power Point Tracking Method Application to Increase the Efficiency of Photovoltaic Installations

Authors

  • L. M. Abdali Sevastopol State University
  • M. N. Al-Maliki Sevastopol State University
  • H. A. Issa Sevastopol State University
  • B. A. Yakimovich Sevastopol State University
  • V. V. Kuvshinov Sevastopol State University

DOI:

https://doi.org/10.22213/2410-9304-2022-4-106-116

Keywords:

solar radiation, photovoltaic cell, photovoltaic module, MPPT, improved incremental conductivity

Abstract

Photovoltaic systems using boost converters based on the traditional incremental conduction method have delayed convergence dynamics to the maximum power point (MPP). This article presents a simulation and hardware implementation of a variable step size MPPT with automatic scaling at low cost and low power consumption. The production of photovoltaic energy is highly dependent on weather and environmental conditions such as temperature and solar radiation. Due to any change in the external environment and the only control condition, the response of the first step of the working cycle of the converter of the traditional incremental conduction MPPT algorithm is not accurate, resulting in an incorrect estimate. Furthermore, this study clarifies the usual technique and presents a modified incremental conductance approach that appropriately responds as solar radiation levels rise. In order to improve the economy and efficiency of photo-voltaic systems, we proposed an improved incremental conduction algorithm for the MPP control strategy. This tech-nique is simpler in structure than the classic incremental conduction algorithm, and it can assign immediate incre-ments of power, voltage, and current as the environment changes, as well as increase tracking performance. The MATLAB/Simulink program runs under conditions of rapidly changing solar radiation levels, and the results of the enhanced and conventional incremental conductance algorithm are compared. The results show that the pro-posed algorithm can effectively detect erroneous judgments and prevent their occurrence. This not only optimizes the system, but also improves the efficiency, response speed, and tracking efficiency of the PV system, thus ensuring the stable operation of the power system.

Author Biographies

L. M. Abdali, Sevastopol State University

Postgraduate, Institute of Nuclear Energy and Industry of Sevastopol State University

M. N. Al-Maliki, Sevastopol State University

Postgraduate, Institute of Nuclear Energy and Industry of Sevastopol State University

H. A. Issa, Sevastopol State University

Postgraduate, Institute of Nuclear Energy and Industry of Sevastopol State University

B. A. Yakimovich, Sevastopol State University

DrSc in Engineering, Professor, Institute of Nuclear Energy and Industry of Sevastopol State University

V. V. Kuvshinov, Sevastopol State University

PhD I Engineering, Institute of Nuclear Energy and Industry of Sevastopol State University

References

Javed, K.; Ashfaq, H.; Singh, R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int. J. Green Energy 2020, 17, 48-61.

Pathak, P. K., Padmanaban, S., Yadav, A. K., Alvi, P. A., & Khan, B. Modified incremental conduc-tance MPPT algorithm for SPV-based grid-tied and stand-alone systems. IET Generation, Transmission & Distribution, 2022, 16 (4), pp.776-791.

Mehrjerdi, H. Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units. Renewable Energy, 2020, 156, 183-192.

Shaw, R. N., Walde, P., & Ghosh, A. IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion. In 2020 IEEE 9th Power India International Conference (PIICON), 2020, pp. 1-4.

Abd Ali, L. M., Al-Rufaee, F. M., Kuvshinov, V. V. et al. Study of Hybrid Wind-Solar Systems for the Iraq Energy Complex. Appl. Sol. Energy, 2020, vol. 56, no. 4, pp. 284-290. https://doi.org/10.3103/ S0003701X20040027.

Darwesh, M. R., & Ghoname, M. S. Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, 2021, 7, pp. 1657-1671.

Анализ различных методов отслеживания точки максимальной мощности при работе солнечных фотоэлектрических систем / Л. М. А. Абдали, Х. А. И. Исса, М. Н. К. Аль-Малики, Б.А. Якимович, В. В. Кувшинов // Интеллектуальные системы в производстве. 2022. Т. 20, № 3. С. 104-113. DOI 10.22213/2410-9304-2022-3-104-113.

Zhang Q., Ning Xu., Ye Z. MMPT control method for photovoltaic power supply based on improved variable-step hill-climbing method. Electric Engineering, vol. 2, pp. 55-57, 2018.

Анализ и моделирование автономной фото-электрической системы с использованием среды matlab/simulink / Л. М. Абдали, Х. А. Исса, К. А. Али, В. В. Кувшинов, Э. А. Бекиров // Строительство и техногенная безопасность. 2021. № 21 (73). С. 97-105. DOI: https://doi.org/10.37279/2413-1873-2021-21-97-105.

Belkaid, A.; Colak, I.; Kayisli, K. Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng. 2017, 99, pp. 839-846.

Abo-Elyousr, F.K.; Abdelshafy, A.M.; Abdelaziz, A.Y. MPPT-Based Particle Swarm and Cuckoo Search Algorithms for PV Systems. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Cham, Switzerland, 2020; pp. 379-400.

Bhukya, M. N., & Kota, V. R. A quick and effective MPPT scheme for solar power generation during dynamic weather and partial shaded conditions. Engineering Science and Technology, an International Journal,2019, 22(3), pp.869-884.

Aouchiche, N.; Aitcheikh, M.S.; Becherif, M.; Ebrahim, M.A. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach. Sol. Energy 2018, 171, 593-603.

Pathy, S.; Subramani, C.; Sridhar, R.; Thentral, T.; Padmanaban, S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies 2019, 12, 1451.Senol M., Abbaso˘ glu S., Kukrer O., Babatunde A. A guide in installing large-scale PV power plant for self-consumption mechanism. Sol. Energy, 2019, 132, pp. 518-537.

H. Li, D. Yang, and W. Su, “An overall distribution particle swarm optimization mppt algorithm for photovoltaic system under partial shading,” IEEE Transactions on Industrial Electronics, vol. 1, no. 1, pp. 265-275, 2018.

Khatib, Tamer, and Wilfried Elmenreich. Modeling of photovoltaic systems using Matlab: Simplified green codes. John Wiley & Sons, 2016.

Ram, J. Prasanth, T. Sudhakar Babu, and N. Rajasekar. "A comprehensive review on solar PV maximum power point tracking techniques." Renewable and Sustainable Energy Reviews 67, 2017, pp.826-847.

Haddad, Ahmad, Mohamad Ramadan, Mahmoud Khaled, Haitham S. Ramadan, and Mohamed Becherif. "Triple hybrid system coupling fuel cell with wind turbine and thermal solar system." International Journal of Hydrogen Energy ,2020, 45, pp. 11484-11491.

Pilakkat, Deepthi, and S. Kanthalakshmi. "An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions." Solar Energy 178, 2019, pp. 37-47.

Layth M. Abd Ali, L M., Ali, Q. A., Klačková, I., Issa, H. A., Yakimovich, B. A. and Kuvshimov, V. (2021) Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment. Acta Montanistica Slovaca, Vol. 26 (4), pp. 773-783 DOI: https://doi.org/ 10.46544/AMS.v26i4.14.

Mitrofanov, S. V., Baykasenov, D. K., & Suleev, M. A. Simulation model of autonomous solar power plant with dual-axis solar tracker. In 2018 International Ural Conference on Green Energy, 2018, pp. 90-96.

Исследование режимов работы комбиниро-ванных солнечно-ветровых установок для обеспече-ния уличного освещения / Л. М. Абдали, Х. А. Исса, М. Н. Аль-Малики, В.В. Кувшинов, Э.А. Бекиров // Строительство и техногенная безопасность. 2022. № 25 (77). С. 75-85.

Published

25.12.2022

How to Cite

Abdali Л. М., Al-Maliki М. К., Issa Х. А., Yakimovich Б. А., & Kuvshinov В. В. (2022). Maximum Power Point Tracking Method Application to Increase the Efficiency of Photovoltaic Installations. Intellekt. Sist. Proizv., 20(4), 106–116. https://doi.org/10.22213/2410-9304-2022-4-106-116

Issue

Section

Articles