Investigation of the Solid-State Wave Gyroscope Toroidal Resonator Design Parameters Effect on the Second Mode Frequency

Authors

  • I. D. Izmestyev Kalashnikov Izhevsk State Technical University
  • A. V. Schenyatsky Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2023-2-4-10

Keywords:

toroidal sensing element, finite element method, solid-state wave gyroscope (SSWG)

Abstract

This article relates to the study of the solid-state wave gyrocope sensitive element design, made as a torus. The article discusses the most common shapes of solid-state wave gyroscope resonators. The advantageous features of the toroidal shape are determined with respect to the classical sensitive elements manufactured by turning methods. The necessity of production transition into mini-SSWG resonators by blowing quartz glass is shown, since the technology eliminates vibrations of the workpiece, and increases maximum achievable accuracy. Based on the generalization of information from foreign researchers, the technology of toroidal mini-resonators production by blowing is presented. Questions are raised about the production technology that requires additional study in order to improve the tactical and technical characteristics of the mini-SSWG, with a toroidal resonator. Using the finite element method, the relation between frequency of the second mode of toroidal resonator natural oscillations and parameters determining its shape is established. The test sensor diameter varies from 1.5 mm to 10 mm. The height takes values from 0.33 mm to 3.3 mm. An inversely proportional relation of the frequency and the diameter of the toroidal resonator base is revealed. A regression equation has been compiled. The study of the second oscillation mode, which is a working one, was carried out in order to find the optimal size ratio of the toroidal sensing element. Optimal is understood as such a shape and dimensions of a resonator that provides the required mechanical strength and gives minimum operating vibration frequency, with maximum relative displacement of the sensing element edge. The general purpose of the work is to reduce the mass and dimensions of the SSWG by using toroidal resonator and thermomechanical method of its obtaining while ensuring high accuracy of the gyroscope.

Author Biographies

I. D. Izmestyev, Kalashnikov Izhevsk State Technical University

Master’s Degree Student

A. V. Schenyatsky, Kalashnikov Izhevsk State Technical University

DSc in Engineering, Professor

References

Журавлев В. Ф., Климов Д. М. Волновой твердотельный гироскоп. М.: Наука, 1985.

ГОСТ 15130-86. Стекло кварцевое оптическое. Общие технические условия (с изменениями N 1, 2). URL: https://docs.cntd.ru/document/1200023786.

Zhang J., Shang J., Luo B., & Su Z. (2019). Micro Fountain-Like Resonators. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 890-895. DOI:10.1109/ECTC.2019.00139.

Asadian M.H., & Shkel A.M. (2019). Fused Quartz Dual Shell Resonator. 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1-4. DOI:10.1109/ISISS.2019.8739671.

Asadian M.H., Wang D., Wang Y., & Shkel A.M. (2020). 3D Dual-Shell Micro-Resonators for Harsh Environments. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 1467-1471. DOI:10.1109/PLANS46316.2020.9109972.

Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 541 с.

Вахлярский Д. С. Оптимизация формы резонатора волнового твердотельного гироскопа по критерию минимума расщепления собственных частот: дис. … канд. техн. наук. М.: МГТУ им. Н. Э. Баумана, 2019.

Лунин Б. С., Матвеев В. А., Басараб М. А. Волновой твердотельный гироскоп. Теория и технология. М.: Радиотехника, 2014. 176 с.

Башарова А. А., Котельников М. А., Щенятский А. В. Технологические подходы к обработке деталей из кварцевого стекла // Вестник современных технологий. 2020. № 4 (20). С. 19-23.

Senkal Doruk, Ahamed Mohammed, Askari Sina, Shkel A. M. (2014). 1 MILLION Q-FACTOR DEMONSTRATED ON MICRO-GLASSBLOWN FUSED SILICA WINEGLASS RESONATORS WITH OUT-OF-PLANE ELECTROSTATIC TRANSDUCTION. 68-71. 10.31438/trf.hh2014.18.

Valeri Chikovani, I.M. Okon. Position, Location and Navigation Symposium, 2008 IEEE/ION // A set of high accuracy low cost metallic resonator CVG. 2008.

Котельников М. А., Щенятский А. В. Влияние материалов на технические характеристики чувствительных элементов навигационных приборов // Автоматизация и измерения в машино-приборостроении. 2018. № 1 (1). С. 71-77.

Rozelle D. The Hemispherical Resonator Gyro: From Wineglass to the Planets // Advances in the Astronautical Sciences. Jan. 2009. No. 134. Pp. 1157-1178.

Li W., Xi X., Lu K., Shi Y., Hou Z., Wu Y., Wu X., & Xiao D. (2019). A Novel High Transduction Efficiency Micro Shell Resonator Gyroscope With 16 T-Shape Masses Using Out-of-Plane Electrodes. IEEE Sensors Journal, 19, 4820-4828. DOI:10.1109/JSEN.2019.2903199.

Su Zhong, Fu Mengyin, Li Qing, Liu Ning, Liu Hong. Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator // Sensors. 2013. No. 13. Pp. 4724-4741

Вахлярский Д. С. Оптимизация формы резонатора волнового твердотельного гироскопа по критерию минимума расщепления собственных частот: дис. … канд. техн. наук. М.: МГТУ им Н.Э. Баумана, 2019.

Миниатюрные волновые твердотельные гироскопы для малых космических аппаратов / М. А. Басараб, Б. С. Лунин, В. А. Матвеев, А. В. Фомичев, Е. А. Чуманкин, А. В. Юрин // Вестник Московского государственного технического университета им. Н. Э. Баумана. Серия "Приборостроение". 2014. Vol. 4. Pp. 80-96.

Lu K., Xi X., Li W., Shi Y., Hou Z., Zhuo M., Wu X., Wu Y., & Xiao D. (2019). Research on precise mechanical trimming of a micro shell resonator with T-shape masses using femtosecond laser ablation. Sensorsand Actuators A: Physical. DOI:10.1016/J.SNA.2019.03.025

Guohong He, K. Najafi. Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on // A single-crystal silicon vibrating ring gyroscope. 2002.

Farrokh Ayazi, Hsiao H. Chen, FatihKocer, Guohong He. A High Aspect-Ratio Polysilicon Vibrating Ring Gyroscope Jan. 2000.

Asadian M.H., Wang Y., & Shkel A.M. (2019). Development of 3D Fused Quartz Hemi-Toroidal Shells for High-Q Resonators and Gyroscopes. Journal of Microelectromechanical Systems, 28, 954-964. DOI:10.1109/JMEMS.2019.2945713.

Bryan G. H. On the Beats in the Vibrations of a Revolving Cylinder or Bell // Proc. of Cambridge Phil. Soc. Nov. 1890. Vol. VII. No. III. Pp. 101-111.

Волновые твердотельные гироскопы (аналитический обзор) / И. А. Волчихин, А. И. Волчихин, Д. М. Малютин [и др.] // Известия Тульского государственного университета. Технические науки. 2017. № 9-2. С. 59-78.

Published

30.06.2023

How to Cite

Izmestyev И. Д., & Schenyatsky А. В. (2023). Investigation of the Solid-State Wave Gyroscope Toroidal Resonator Design Parameters Effect on the Second Mode Frequency. Intellekt. Sist. Proizv., 21(2), 4–10. https://doi.org/10.22213/2410-9304-2023-2-4-10

Issue

Section

Articles