Slotted-Waveguide Antenna Array Development by Means of Complementarity оf CST Microwave Studio and Compass 3D Programs
DOI:
https://doi.org/10.22213/2410-9304-2023-2-69-80Keywords:
standing wave ratio, matching, electromagnetic modeling, multichannel power distributer, slotted-waveguide antenna array, microwave devicesAbstract
The main steps of the methodology for complex slotted-waveguide antenna arrays development using the complementary application of the COMPASS 3D design program and electromagnetic modeling CST Microwave Studio are considered. The presentation of the technique steps is carried out on the example of a structurally complex slotted-waveguide antenna array of the Ka-band with dimensions (117 mm ´ 30 mm) and two-dimensional array of 64 (2 ´ 8 ´ 4) slotted emitters. To facilitate the synthesis of the design parameters of such grids, it is proposed to use a three-stage process: 1) design of slotted antenna emitting modules with adjustment to a given operation frequency range; 2) development of harmonized multichannel power divider for them; 3) combining the antenna modules and the branched power divider into an effective antenna array with additional adjustment of their coordination parameters. According to this sequence, in the illustrated example, on the first step, the antenna emitter module with four slits is designed in the CST Microwave Studio program. Afterwards, on the second stage, a complex multi-channel waveguide power divider was designed. It is first drawn in COMPASS 3D and then imported and analysed in CST Microwave Studio. On the final third stage, the entire slotted-waveguide antenna array was assembled and simulated in CST Microwave Studio. At the same time, the obtained radiation pattern of the antenna array, the functions of electromagnetic field distribution in the waveguide path and other electromagnetic characteristics corresponded to the required ones. Equally, there was a slight shift in the standing wave ratio (SWR) of the operating frequency matching, as well as some deterioration in the SWR. This is explained by the fact that the links between the models of antenna emitters and the waveguide power distributor were carried out "in ideal ports". Meanwhile, the real values of the input resistances in these planes of the assembled structure are somewhat different from the ideal ones. Therefore, to complete the process of structural synthesis of the antenna-slot array, two approaches should be used: 1) it is better to complete design parameter optimization according to the criterion of improving the harmonization, if required to shift the operating frequency, 2) to reduce the SWR value, it is better to improve the coordination of the antenna array at its input by adjusting the matching device.References
Liang Liu, Yu Yang, Shifeng Li, Xianghe Fang, Fanbao Meng, and Chuan Yu. A 3D Printed Ka-Band High-Efficiency Wide-Slit Antenna Array for High-Power Microwave Applications // Hindawi, International Journal of Antennas and Propagation, 2022, Article ID 2653410, 8 p. https://doi.org/10.1155/2022/2653410.
Курушин А. А. Проектирование СВЧ-устройств в CST studio suite. М.: Солон-Пресс, 2018. 428 с.
Фатеев А. В. Применение ПО CST Microwave Studio для расчёта микроволновых антенн и устройств СВЧ. Томск: ТУСУР, 2017. 121 с. URL: https://edu.tusur.ru/publications/4877.
Чагина А. В., Большаков В. П. 3D-моделирование в КОМПАС-3D версий v17 и выше. Санкт-Петербург: Питер, 2021. 256 с.
Кочетков В. А., Солдатиков И. В. Численные методы и инструменты моделирования антенных решеток РЭС СВЧ-диапазона // Известия ТулГУ. Технические науки. 2021. Вып. 9. С. 91-100.
Shahrubudin N., Lee T. C., and Ramlan R. An overview on 3D printing technology: technological, materials, and applications, Procedia Manufacturing, 2019, vol. 35, pp. 1286-1296.
Jiang X., Jia F., and Huang Y. P. J. X. Ka-band 8 × 8 lowsidelobe slot antenna array using a 1-to-64 high-efficiency network designed by new printed RGW technology, IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 6, pp. 1248-1252.
Разработка антенной решетки в терагерцовом диапазоне / М. С. Мякишева, К. И. Кисиленко, Е. П. Тимофеев // Известия высших учебных заведений. Поволжский регион. Технические науки. 2018. № 1 (45). С. 111-122.
Земляков В. В., Заргано Г. Ф. Волноводные селективные устройства. Ростов на Дону; Таганрог: Издательство Южного федерального университета, 2019. 310 с.
Методы анализа волноводных линий передачи / Н. С. Архипов, С. Н. Архипов, И. С. Полянский, А. М. Сомов. М.: Горячая линия - Телеком, 2017. 114 с.
Yunqing Cao, Menglong Wang, Daoyuan Sun, and Dan Shan. A Novel Miniaturized Four-Ridged Horn Antenna with Enhanced Gain // Hindawi, International Journal of Antennas and Propagation, 2021, Article ID 8143395, 7 p. URL: https://doi.org/10.1155/2021/8143395.
Zhao X., Yuan C., and Zhang J., Zhang Q. Design of a beam scanning metamaterial antenna with polarization transform for high-power microwave application," Microwave and Optical Technology Letters, vol. 62, October 2020.
Sun Y., He J., Yuan C., and Zhang Q. X. L. Ku-band radialline continuous transverse stub antenna with transmit-array lens for high-power microwave application, IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 3, pp. 2050-2059.
Balzovsky E. V., Buyanov Y. I., Koshelev V. I., and Nekrasov E. S. Ultrawideband combined antenna with improved matching, IOP Conference Series: Materials Science and Engineering, 2018, vol. 363, Article ID 012002.
Шаров Г. А. Волноводные устройства сантиметровых и миллиметровых волн. М.: Горячая линия - Телеком, 2022. 638 с.
Мануилов М. Б. Волноводные антенные решетки и устройства СВЧ. Ростов на Дону; Таганрог: Издательство Южного федерального университета, 2021. 316 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Н М Татаркин, Е М Зайцева, К В Шишаков
This work is licensed under a Creative Commons Attribution 4.0 International License.