Analysis of Photovoltaic Systems Through Simulation and Design Using MATLAB

Authors

  • M. N. Al-Maliki Institute ofNuclear Energy and Industry ofSevastopol State University
  • L. M. Abdali Institute of Nuclear Energy and Industry of Sevastopol State University
  • H. A. Issa Institute of Nuclear Energy and Industry of Sevastopol State University
  • B. A. Yakimovich Institute of Nuclear Energy and Industry of Sevastopol State University
  • V. N. Syakterev Kalashnikov Izhevsk State Technical University
  • V. V. Kuvshinov Institute of Nuclear Energy and Industry of Sevastopol State University

DOI:

https://doi.org/10.22213/2410-9304-2023-2-121-129

Keywords:

photovoltaic cell, Solar Energy, Matlab-SIMULINK, distributed generation, photovoltaic panels

Abstract

During the operation of photovoltaic systems, a large amount of converted energy, according to various parameters, does not participate in the consumer power supply. As a result, the efficiency of solar installations and the reliability of electric power supply are reduced. This happens for various reasons, but primarily due to the imperfect operation of automatic control systems for photovoltaic installations. These systems are controlled by the information equipment of the entire installation based on software and control algorithms. The imperfection of these algorithms does not allow the full use of solar generation of photovoltaic panels and degrades the quality of operation of all the main and auxiliary equipment of the power generating complex. In the presented work, studies were carried out to improve the operation of the solar power supply system and increase its reliability. The proposed solutions were based on the use of new methods for tracking the maximum power point using high-tech algorithms to control the photovoltaic generating system. In this paper, a generalized Matlab-Simulink solar cell operation model was proposed. The basis of the proposed model is a simple mathematical equation to simulate the operation of a solar photovoltaic cell, since the output characteristics of photovoltaic modules are non-linear. The output I-V and P-V properties of a photovoltaic cell depend on the temperature of the cell and solar radiation. The physical characteristics of a particular solar photovoltaic cell can be modeled as a function of temperature and solar radiation. Numerous models use various software platforms that are available in the literature. This simulation model is very simple and easy to use. Simulation results in Matlab Simulink demonstrate the functionality and dynamic behavior of the provided solar module. Based on the study, it was found that the proposed algorithms can significantly improve the efficiency of photovoltaic installations, taking into account the use of new control methods. The power generated from solar energy converters was used more efficiently, and the photovoltaic system operated at a high conversion rate.

Author Biographies

M. N. Al-Maliki, Institute ofNuclear Energy and Industry ofSevastopol State University

Post-graduate

L. M. Abdali, Institute of Nuclear Energy and Industry of Sevastopol State University

Post-graduate

H. A. Issa, Institute of Nuclear Energy and Industry of Sevastopol State University

Post-graduate

B. A. Yakimovich, Institute of Nuclear Energy and Industry of Sevastopol State University

DSc in Engineering, Professor

V. N. Syakterev, Kalashnikov Izhevsk State Technical University

PhD in Engineering, Associate Professor

V. V. Kuvshinov, Institute of Nuclear Energy and Industry of Sevastopol State University

PhD in Engineering

References

El Mentaly, Lahcen, Abdellah Amghar, and Hassan Sahsah. "Comparison between HC, FOCV and TG MPPT algorithms for PV solar systems using buck converter". In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1-5. IEEE, 2017.

Mitrofanov S. V., Baykasenov D. K., & Suleev M. A. Simulation model of autonomous solar power plant with dual-axis solar tracker. In 2018 International Ural Conference on Green Energy, IEEE, 2018, pp. 90-96.

Layth M. Abd Ali, L M., Ali, Q. A., Klačková, I., Issa, H. A., Yakimovich, B. A. and Kuvshimov, V. (2021) Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment. Acta Montanistica Slovaca, Volume 26 (4), 773-783 DOI: https://doi.org/10.46544/AMS.v26i4.14.

Pilakkat, Deepthi, and S. Kanthalakshmi. "An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions". Solar Energy 178, 2019, pp. 37-47.

Banaei, Mohamad Reza, and Hossein Ajdar Faeghi Bonab. "A high efficiency nonisolated buck-boost converter based on ZETA converter". IEEE Transactions on Industrial Electronics,2019, 67, no. 3, pp. 1991-1998.

Gheisarnejad, Meysam, Hamed Farsizadeh, and Mohammad Hassan Khooban. "A novel nonlinear deep reinforcement learning controller for DC-DC power buck converters". IEEE Transactions on Industrial Electronics 68, no. 8 (2020): 6849-6858.

Ram J. Prasanth T. Sudhakar Babu, and N. Rajasekar. "A comprehensive review on solar PV maximum power point tracking techniques". Renewable and Sustainable Energy Reviews 67, 2017, pp. 826-847.

Khatib, Tamer, and Wilfried Elmenreich. Modeling of photovoltaic systems using Matlab: Simplified green codes. John Wiley & Sons, 2016.

Анализ различных методов отслеживания точки максимальной мощности при работе солнечных фотоэлектрических систем / Л. М. А. Абдали, Х. А. И. Исса, М. Н. К. Аль-Малики,Б.А. Якимович, В. В.Кувшинов // Интеллектуальные системы в производстве. 2022. Т. 20, № 3. С. 104-113. DOI 10.22213/2410-9304-2022-3-104-113.

H. Li, D. Yang, and W. Su, "An overall distribution particle swarm optimization mppt algorithm for photovoltaic system under partial shading", IEEE Transactions on Industrial Electronics, vol. 1, no. 1, pp. 265-275, 2018.

Pathy S.; Subramani C.; Sridhar R.; Thentral T.; Padmanaban S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies 2019, 12, 1451. Senol M., Abbaso˘ glu S., Kukrer O., Babatunde A. A guide in installing large-scale PV power plant for self-consumption mechanism. Sol. Energy, 2019, 132, pp. 518-537.

Aouchiche N.; Aitcheikh M.S.; Becherif M.; Ebrahim M.A. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach. Sol. Energy 2018, 171, 593-603.

Bhukya M. N., & Kota V. R. A quick and effective MPPT scheme for solar power generation during dynamic weather and partial shaded conditions. Engineering Science and Technology, an International Journal, 2019, 22 (3), pp. 869-884.

Abo-Elyousr F.K.; Abdelshafy A.M.; Abdelaziz A.Y. MPPT-Based Particle Swarm and Cuckoo Search Algorithms for PV Systems. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Cham, Switzerland, 2020; pp. 379-400.

Belkaid A.; Colak I.; Kayisli K. Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng. 2017, 99, pp. 839-846.

Исследование режимов работы комбинированных солнечно-ветровых установок для обеспечения уличного освещения / Л. М. Абдали, Х. А. Исса, М. Н. Аль-Малики, В.В. Кувшинов, Э.А. Бекиров // Строительство и техногенная безопасность. 2022. № 25 (77). С. 75-85.

Zhang Q., Ning Xu., Ye Z. MMPT control method for photovoltaic power supply based on improved variable-step hill-climbing method. Electric Engineering, vol. 2, pp. 55-57, 2018.

Использование метода отслеживания точки максимальной мощности для увеличения эффективности работы фотоэлектрических установок / Л. М. Абдали, М. Н. Аль-Малики, Х. А. Исса, Б. А. Якимович, В. В. Кувшинов // Интеллектуальные системы в производстве. 2022. Т. 20, № 4. C. 106-116. DOI: 10.22213/2410-9304-2022-4-106-116.

Darwesh M. R., & Ghoname M. S. Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, 2021, 7, pp. 1657-1671.

Abd Ali L. M., Al-Rufaee F. M., Kuvshinov V. V. et al. Study of Hybrid Wind-Solar Systems for the Iraq Energy Complex. Appl. Sol. Energy, 2020, vol. 56, no. 4, pp. 284-290. https://doi.org/10.3103/S0003701X20040027.

Shaw R. N., Walde P., & Ghosh A. IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion. In 2020 IEEE 9th Power India International Conference (PIICON), 2020, pp. 1-4.

Mehrjerdi H. Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units. Renewable Energy, 2020, 156, 183-192.

Pathak P. K., Padmanaban S., Yadav A. K., Alvi P. A., & Khan B. Modified incremental conductance MPPT algorithm for SPV-based grid-tied and stand-alone systems. IET Generation, Transmission & Distribution, 2022, 16(4), pp. 776-791.

Javed K.; Ashfaq H.; Singh R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems.Int. J. Green Energy 2020, 17, 48-61.

Published

30.06.2023

How to Cite

Al-Maliki М. Н., Abdali Л. М., Issa Х. А., Yakimovich Б. А., Syakterev В. Н., & Kuvshinov В. В. (2023). Analysis of Photovoltaic Systems Through Simulation and Design Using MATLAB. Intellekt. Sist. Proizv., 21(2), 121–129. https://doi.org/10.22213/2410-9304-2023-2-121-129

Issue

Section

Articles