Modeling of the Gas Dynamic Processes with Different Equations of State

Authors

  • V. A. Tenenev UdmFIC UB of RAS; Kalashnikov Izhevsk State technical University
  • M. R. Koroleva UdmFIC UB of RAS; Kalashnikov Izhevsk State technical University

DOI:

https://doi.org/10.22213/2410-9304-2023-3-115-123

Keywords:

safety valve, Soave-Redlich-Kwong equation, van-de-Waals equation, ideal gas, equations of state

Abstract

The work is devoted to the study of the features of gas-dynamic processes at the high pressures. The flows of air, hydrogen and water vapor are considered. The results obtained using the ideal gas equation and two real gas equations - van der Waals and Soave-Redlich-Kwong are analyzed. The comparison has been done on the numerical simulation results for the safety valve operation problem. The problem was solved in a three-dimensional non-stationary formulation using the finite volume method. Numerical solution method was built on the basis of the Godunov’s method. The results of a comparison of isotherms for each media are presented. Those are obtained using the considered equations of state in the regions when the gases thermodynamic parameters are changed. The influence of the gas model on the processes in the safety valve has been studied in detailsfor hydrogen. A detailed comparison of the local distributions of pressure, temperature, density, and flow velocity has been made. The complex impact of the flow parameters was studied using the integral characteristics - the gas-dynamic force acting on the disk and the gas flow rate. It has been found the gas-dynamic forces obtained within the framework of ideal gas model and the Soave-Redlich-Kwong gas are close to each other in magnitude and exceed the force for the van-der-Waals gas. However, the flow rate of ideal gas significantly exceeded that for both real gases. It is due to a twofold increase in density, which is not compensated by a decrease in the flow velocity. Thus, to obtain accurate data on the dynamic and velocity effects of gas flows on technical devices at high pressures it is necessary to use the real gas equations of state.

Author Biographies

V. A. Tenenev, UdmFIC UB of RAS; Kalashnikov Izhevsk State technical University

DSc.in Physics and Mathematics, Professor

M. R. Koroleva, UdmFIC UB of RAS; Kalashnikov Izhevsk State technical University

PhD in Physics and Mathematics, Associate Professor

References

Тененев В. А., Королева М. Р. Численное моделирование течения реального газа Ван-дер-Ваальса в ударной трубе // Интеллектуальные системы в производстве. 2021. Т. 19, № 2. С. 96-103. DOI 10.22213/2410-9304-2020-3-118-126.

Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. М.: Наука, 1976. 400 c.

Численное моделирование процесса срабатывания предохранительного клапана / М. Р. Королева, О. В. Мищенкова, Т. Редер, В. А. Тененев, А. А. Чернова // Компьютерные исследования и моделирование. 2018. Т. 10, № 4. С. 495-509. DOI 10.20537/2076-7633-2018-10-4-495-509.

Raeder T., Tenenev V., Chernova A., Koroleva M. Multilevel simulation of direct operated safety valve / Ivannikov Isp Ras Open Conference: Proceeding, ISPRAS 2018. Moscow, 2019. Pp. 109-115. DOI: 10.1109/ISPRAS.2018.00025.

Raeder T., Mishchenkova O.V., Koroleva M.R., Tenenev V.A. Nonlinear processes in safety systems for substances with parameters close to a critical state // Russian Journal of Nonlinear Dynamics. 2021. Vol. 17. № 1. Pp. 119-138. DOI: 10.20537/nd210109.

Zohuri B. Properties of Pure Substances. Physics of Cryogenics. Elsevier, 2018. - 710 p. DOI 10.1016/B978-0-12-814519-7.03001-9.

Benedict M. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures //j. Chem. Physics. 1940. Vol. 8. Pp. 334-345.

Akberov R. R. Calculating the vapor-liquid phase equilibrium for multicomponent systems using the Soave-Redlich-Kwong equation // Theoretical Foundations of Chemical Engineering. 2011. Vol. 45. № 3. Pp. 312-318. DOI 10.1134/S004057951103002X.

Soave G. 20 years of Redlich-Kwong equation of state // Fluid Phase Equilibria. 1993. Vol. 82. Pp. 345-359. DOI 10.1016/0378-3812(93)87158-W.

Maxwell J. Van der Waals on the Continuity of the Gaseous and Liquid States // In W. Niven (Ed.), The Scientific Papers of James Clerk Maxwell (Cambridge Library Collection - Physical Sciences). 2011. Pp. 407-415. DOI 10.1017/CBO9780511710377.044.

Demirel Y., Gerbaud V. Nonequilibrium Thermodynamics. Fundamentals of Equilibrium Thermodynamics. Elsevier, 2019. 854 p. DOI 10.1016/b978-0-444-64112-0.00001-0

Peng D., Robinson D. A new two constant equation of state // Ind. Eng. Chem. Fundamentals. 1976. Vol. 15. Pp. 59-64.

Betancourt-Cardenas F.F., Galicia-Luna L.A., Sandler S.I. Equation of state for the Lennard-Jones fluid based on the perturbation theory // Fluid Phase Equilibria. 2008. Vol. 264. №. 1-2. Pp. 174-183. DOI 10.1016/j.fluid.2007.11.015.

Paricaud P. Recent advances in the use of the SAFT approach in describing electrolytes, interfaces, liquid crystals and polymers // Fluid phase equilibria. 2002. Vol. 194. Pp. 87-96. DOI 10.1002/chin.200225274

Span R. Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data. Berlin: Springer, 2000. 367 p. DOI 10.1007/978-3-662-04092-8_4

Кочетков А. В., Федотов П. В. Уравнения состояния газа и модель идеального газа // Науковедение. 2017. Т. 9, № 3. С. 57.

Published

09.10.2023

How to Cite

Tenenev В. А., & Koroleva М. Р. (2023). Modeling of the Gas Dynamic Processes with Different Equations of State. Intellekt. Sist. Proizv., 21(3), 115–123. https://doi.org/10.22213/2410-9304-2023-3-115-123

Issue

Section

Articles