Temperature Field Modelas a Factor to Improve a Horizontal Ground Heat Exchanger of a Heat Pump System: Review of Scientific Approaches and the Content of the Analytical Model

Authors

  • A. V. Shchenyatsky Kalashnikov Izhevsk State Technical University
  • K. S. Shatalov Kalashnikov Izhevsk State Technical University
  • O. M. Shatalova Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2023-3-132-143

Keywords:

heat exchangers, temperature field, heat pump systems, optimal control, mathematical modeling

Abstract

The article is devoted to the research of issues related to the organization of control systems for heat pump installations (HPS). HPS is used to use low-potential energy of the environment in the heat supply of buildings. HPS with horizontal ground heat exchangers (HGHE) are of great importance for improving energy efficiency. The efficiency and reliability of HPS with HGHE strongly depends on the state of the soil temperature field. A large number of scientific publications are devoted to modeling soil temperature fields forHGHEparameterdetermination; a significant part of them is devoted to the study of vertical ground heat exchangers. Scientific developments presented in foreign publications on modeling the temperature field of the HGHE location environment are focused on the use of HPS in the cold supply mode and/or in the heat supply mode under conditions of a slight decrease in temperature, which excludes soil freezing. The aim of the study was to apply the existing methods of the analytical theory of thermal conductivity to develop a soil-environment TP model for the placement of a HGHE HPS; the developed model is intended for engineering calculations of the main design HGHEparameters; the model is also applicable to determine the annual specific heat flow as an important parameter in the optimal control system of the HPI. The development of the model is based on the condition of a two-element structure of the soil massif: under the HGHE and above the HGHE; the target parameter is the temperature of the soil mass, depending on the coordinate and time, disclosed through the indicator "relative temperature rise"; in accordance with the provisions of the thermal conductivitytheory, the relative excess temperature is given for the cases of a semi-infinite body (soil mass under the HGHE) and a slab (soil mass above the HGHE). The proposed model is implemented on the example of two constituent entities of the Russian Federation. The results obtained made it possible to determine the minimum guaranteed possibility of using HPS for heat supply in these climatic conditions. The model presented in the article can be used as a context for further studies of the main parameters of HGHE HPS operation and optimization of HPS operation modes.

Author Biographies

A. V. Shchenyatsky, Kalashnikov Izhevsk State Technical University

DSc. in Engineering, Professor

K. S. Shatalov, Kalashnikov Izhevsk State Technical University

Post-graduate

O. M. Shatalova, Kalashnikov Izhevsk State Technical University

DSc. in Economics

References

Bergman T.L., Lavine A.S., Incropera F.P., Dewitt D.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011.

Лыков А. В. Теория теплопроводности. М.: Высш. школа, 1967. 600 с.

Васильев Г. П. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев земли: дис.. д-ра техн. наук: 05.23.03. Новосибирск, 2006. 432 с.

Тимофеев Д. В. Разработка метода расчета теплонасосных систем с грунтовым теплообменником для определения их энергетического ресурса: дисс. … канд. техн. наук: 2.1.3. Москва, 2021. 120 с.

Сапрыкина Н. Ю. Совершенствование методики расчета систем теплоснабжения и кондиционирования на основе низкопотенциальных геотермальных источников энергии: дисс. … канд. техн. наук: 05.23.03. Астрахань, 2020. 149 с.

Сапрыкина Н. Ю., Яковлев П. В. Совершенствование методики прогнозирования температурных режимов породного массива вокруг низкопотенциальной геотермальной скважины // Градостроительство. Инфраструктура. Коммуникации. 2019. № 3(16). С. 16-25.

Кротов В. М. Совершенствование методики расчета первичного контура систем теплоснабжения, использующих низкопотенциальную теплоту грунта: дисс. … канд. техн. наук: 05.23.03. Тюмень, 2011. 139 с.

Liu, Q., Tao, Y., Shi, L., Zhou, T., Huang, Y., Peng, Y., Wang, Y., Tu, J. Parametric optimization of a spiral ground heat exchanger by response surface methodology and multi-objective genetic algorithm, Applied Thermal Engineering, 2023, Vol. 221, 119824.DOI10.1016/j.applthermaleng.2022.119824.

Li C., Mao J., Zhang H., Xing Z., Li Y., Zhou J. Numerical simulation of horizontal spiral-coil ground source heat pump system: Sensitivity analysis and operation characteristics, Applied Thermal Engineering, 2017, Vol. 110, pp. 424-435. DOI10.1016/j.applthermaleng.2016.08.134.

Bulmez, A.-M., Ciofoaia, V., N˘astase, G., et al. Numerical Investigation on Auxiliary Heat Sources for Horizontal Ground Heat Exchangers.Buildings 2022, 12, 1259. https://doi.org/10.3390/buildings12081259.

Yang W., Xu R., Wang F., Chen S., Experimental and numerical investigations on the thermal performance of a horizontal spiral-coil ground heat exchanger, Renewable Energy, vol. 147, part 1, 2020, pp. 979-995, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.09.030.

Zeng C., Yuan Y., Xiang B., Cao X., Zhang Z., Sun L. Thermal and infrared camouflage performance of earth-air heat exchanger for cooling an underground diesel generator room for protective engineering, Sustainable Cities and Society, vol. 47, 2019, 101437, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2019.101437.

Lebbihiat N., Atia A., Arıcı M., Meneceur N., Hadjadj A., Chetioui Y. Thermal performance analysis of helical ground-air heat exchanger under hot climate: In situ measurement and numerical simulation, Energy, Vol.254, Part C, 2022, 124429, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2022.124429.

Widiatmojo A, Chokchai S, Takashima I, Uchida Y, Yasukawa K, Chotpantarat S, Charusiri P. Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand. Energies. 2019; 12(7):1274. https://doi.org/10.3390/en12071274.

Congedo P.M., Colangelo G., Starace G. CFD simulations of horizontal ground heat exchangers: A comparison among different configurations, Applied ThermalEngineering, 2012, Vol. 33-34, 2012, pp. 24-32. DOI10.1016/j.applthermaleng.2011.09.005.

Dasare R., Saha S. Numerical study of horizontal ground heat exchanger for high energy demand applications. Applied Thermal Engineering, 2015, vol. 85, pp. 252-263.DOI 10.1016/j.applthermaleng.2015.04.014.

Al-Ameen, Y., Ianakiev, A., Evans, R. Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems. Energy, 2018, 151, pp. 556-568. DOI 10.1016/j.energy.2018.03.095.

Fujii, H., Nishi, K., Komaniwa, Y., Chou, N. Numerical modeling of slinky-coil horizontal ground heat exchangers. Geothermics, 2012, 41, pp. 55-62. DOI 10.1016/j.geothermics.2011.09.002.

Gan, G. Dynamic thermal performance of horizontal ground source heat pumps - The impact of coupled heat and moisture transfer.Energy, 2018, 152, pp. 877-887. DOI 10.1016/j.energy.2018.04.008.

Tang F., Nowamooz H. Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths. Renewable Energy, 2019, 143: 1732-1743. DOI10.1016/j.renene.2019.05.120.

Tang, F.-J. Numerical investigation on the ground heat exchanger installed in shallow depth soils.

Jeon, J.-S., Lee, S.-R., and Kim, M.-J.A modified mathematical model for spiral coil-type horizontal ground heat exchangers.Energy, 2018, 152, pp. 732-743. DOI 10.1016/j.energy.2018.04.007.

Wang, D., Lu, L., and Cui, P. A new analytical solution for horizontal geothermal heat exchangers with vertical spiral coils.International Journal of Heat and Mass Transfer, 2016, 100, pp. 111-120.DOI 10.1016/j.ijheatmasstransfer.2016.04.001.

Xiong, Z., Fisher, D.E., and Spitler, J.D. Development and validation of a Slinky (TM) ground heat exchanger model. Applied Energy,2015, 141, pp. 57-69. DOI 10.1016/j.apenergy.2014.11.058.

Kupiec, K., Larwa, B., Gwadera, M. Heat transfer in horizontal ground heat exchangers. Applied Thermal Engineering, 2015, 75, pp. 270-276.м DOI10.1016/j.applthermaleng.2014.10.003.

Li, H., Nagano, K., Lai, Y. Heat transfer of a horizontal spiral heat exchanger under groundwater advection.International Journal of Heat and Mass Transfer, 2012, 55, pp. 6819-6831. DOI 10.1016/j.ijheatmasstransfer.2012.06.089.

Lamarche L. Horizontal ground heat exchangers modelling. Applied Thermal Engineering, 2019, 155, pp. 534-545. DOI 10.1016/j.applthermaleng.2019.04.006

Tang, F.-J. Numerical investigation on the ground heat exchanger installed in shallow depth soils: A thesis submitted in partial fulfillment for the degree of PhD in the Doctoral School of MSII; University of Strasbourg, 2019. 236 p. Available at: https://theses.hal.science/tel-02528548/preview/TANG_Fujiao_2019_ED269.pdf (accessed 01.03.2022).

Atam, E., Helsen, L. Ground-coupled heat pumps: Part 2 - Literature review and research challenges in optimal design. Renewable and Sustainable Energy Reviews, 2016, 54, 1668-1684. DOI 10.1016/j.rser.2015.07.009.

Published

09.10.2023

How to Cite

Shchenyatsky А. В., Shatalov К. С., & Shatalova О. М. (2023). Temperature Field Modelas a Factor to Improve a Horizontal Ground Heat Exchanger of a Heat Pump System: Review of Scientific Approaches and the Content of the Analytical Model. Intellekt. Sist. Proizv., 21(3), 132–143. https://doi.org/10.22213/2410-9304-2023-3-132-143

Issue

Section

Articles