Comparison of Various Hydrogen Production Technologies from Natural Gas

Authors

  • N. A. Mezaal Energy Institute of Peter the Great St. Petersburg Polytechnic University
  • A. A. Kalyutik Energy Institute of Peter the Great St. Petersburg Polytechnic University
  • A. S. Salman Kirkuk Technical College, North Technical University
  • L. M. Abdali Institute of Nuclear Energy and Industry of Sevastopol State University

DOI:

https://doi.org/10.22213/2410-9304-2023-4-101-108

Keywords:

natural gas, autothermal reforming (ATR), Partial oxidation (POX), methane, Steam-methane reforming (SMR), hydrogen

Abstract

The article provides an overview of the present condition and immediate future potential in the realm of hydrogen energy technologies. The paper delves into the most renowned approaches for generating hydrogen from natural gas: a) Steam-Methane Reforming (SMR); b) Partial Oxidation (POX); and c) Autothermal Reforming (ATR). Nevertheless, employing these technologies on an industrial scale requires substantial R&D efforts, often on the scale of experimental ventures. The article also examines the global energy landscape, energy sources, the historical discovery of hydrogen, and the various production methods. It addresses the intricacies associated with hydrogen production technologies, with a focal point on the technology of extracting hydrogen from natural gas. Through a comparison of the benefits and drawbacks of each method and, as explicated in the concluding section of the study, several significant insights have been derived. Among the three technologies, SMR, the steam conversion process, boasts the highest hydrogen production rate. Catalytic partial oxidation of methane exhibits the swiftest reaction rate; however, it necessitates the use of pure oxygen, which poses safety concerns. The process of methane auto-thermal reforming requires no external heat and is characterized by minimal energy consumption. Steam reforming of methane emerges as an ecologically sound and scientifically promising avenue, offering high effectiveness. Nevertheless, its deployment on an industrial scale remains to be fully refined. Developing cost-effective catalysts and continuous reactor systems for methane steam conversion technology is essential to rendering it economically viable. In conclusion, there is substantial potential for advancements at hydrogen energy technologies, particularly through refining and integrating these different production methods.

Author Biographies

N. A. Mezaal, Energy Institute of Peter the Great St. Petersburg Polytechnic University

Post-graduate

A. A. Kalyutik, Energy Institute of Peter the Great St. Petersburg Polytechnic University

PhD in Engineering, Associate Professor

A. S. Salman, Kirkuk Technical College, North Technical University

Candidate of Technical Sciences, Associate Professor

L. M. Abdali, Institute of Nuclear Energy and Industry of Sevastopol State University

PhD in Engineering, Associate Professor

References

Mikheeva E.R., Katraeva I.V., Vorozhtsov D.L., Kovalev D.A., Kovalev A.A., Grigoriev V.S. and Litti Y.V. Dark fermentative biohydrogen production from confectionery wastewater in continuous-flow reactors.International Journal of Hydrogen Energy, 2022, 47(53), pp. 22348-22358.

Khanipour M., Mirvakili A., Bakhtyari A., Farniaei M. and Rahimpour M.R. Enhancement of synthesis gas and methanol production by flare gas recovery utilizing a membrane-based separation process. Fuel Processing Technology, 2017, 166, pp. 186-201.

Гимаева А. Р., Хасанов И. И. Методы производства синтез-газа для метанола // Химические технологии и продукты. 2018. № 1. C. 14-19.

Reddy B.R., Malhotra A., Najmi S., Baker-Fales M., Coasey K., Mackay M. and Vlachos D.G. Microwave assisted heating of plastic waste: Effect of plastic/susceptor (SiC) contacting patterns. Chemical Engineering and Processing-Process Intensification, 2022, 182, pp. 109202.

Martín Á. and Navarrete A. Microwave-assisted process intensification techniques. Current Opinion in Green and Sustainable Chemistry, 2018, 11, pp. 70-75.

Chen W., Malhotra A., Yu K., Zheng W., Plaza-Gonzalez P.J., Catala-Civera J.M., Santamaria J. and Vlachos D.G.Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing. ChemicalEngineeringJournal, 2021,vol.420, pp. 130476.

Li X., Zhou Y., Yu S., Jia G., Li H. and Li W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 2019, 174, pp. 407-419.

Gunawardena K.R., Wells M.J. and Kershaw T. Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 2017, 584, pp. 1040-1055.

Орлов М. Е., Шарапов В. И. Повышение эффективности систем теплоснабжения городов // Сантехника. Отопление, Кондиционирование. 2014. № 1 (145). С. 72-77.

Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Kovalev D. A., Kovalev A. A., Grigoriev V. S., and Litti Yu V. Dark fermentative biohydrogen production from confectionery wastewater in continuous-flow reactors.International Journal of Hydrogen Energy 47, no. 53, 2022, pp. 22348-22358.

Vidas L. and Castro R. Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Applied Sciences, 2021, 11 (23), pp. 11363.

Pal D.B., Singh A. and Bhatnagar A. A review on biomass-based hydrogen production technologies.International Journal of Hydrogen Energy, 2022, 47 (3), pp.1461-1480.

Chai, Siqi, Guojie Zhang, Guoqiang Li, and Yongfa Zhang. Industrial hydrogen production technology and development status in China: A review. Clean Technologies and Environmental Policy 23, no. 7, 2021, pp. 1931-1946.

Получение водорода в процессах конверсии углеводородных газов / И. В. Седов, Л. П. Диденко, А. Ю. Зайченко, А. В. Никитин // Водород. Технологии. Будущее: сборник тезисов докладов Всероссийской научно-практической конференции. Томск: Изд-во Томского политехнического университета, 2021. C. 49-50.

Gonzalez-Fernandez, A., 2020. Gas phase catalytic hydrogenation of alkynols over palladium and nickel catalysts (Doctoral dissertation, Heriot-Watt University).

Marquart W., 2018. Effect of ammonia co-feeding on oxygenates over K-Mo2C in the Fischer-Tropsch synthesis (Master's thesis, University of Cape Town).

Ishihara A., Tsujino H., Hashimoto T. Effects of the addition of CeO2 on the steam reforming of ethanol using novel carbon-Al2O3 and carbon-ZrO2 composite-supported Co catalysts / Royal society of chemistry, 11, 2021, pp. 8530-8539.

Hou L., Jia Z., Gong J., Xhou Y. and Piao Y. Heat sink and conversion of catalytic steam reforming for hydrocarbon fuel. Journal of Propulsion and Power, 2012, 28(3), pp. 453-595.

Amiri T.Y., Ghasemzageh K. and Iulianelli A. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering and Processing-Process Intensification, 2020, 157, pp. 108148.

Fowles M., and Carlsson M. Steam reforming of hydrocarbons for synthesis gas production. Topics in Catalysis 64, no. 17-20, 2021, pp. 856-875.

Bains M., Hill L., Rossington P. Material decisions comparators for end of waste decisions Fuels: natural gas Report / Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, 2016, pp. 1-34.

Megía P. J., Vizcaíno A. J., Callesand A. Carrero J. A. Hydrogen Production Technologiesfrom Fossil Fuels toward Renewable Sources, A Mini Review / ACS Energy&Fuels. 35,2021,pp.16403-16415.

Xu X., Zhou Q. and Yu D. The future of hydrogen energy: Bio-hydrogen production technology.International Journal of Hydrogen Energy, 2022, 47 (79), pp. 33677-33698.

Holladay J.D., Hu J., King D.L. and Wang Y. An overview of hydrogen production technologies. Catalysis today, 2009, 139(4), pp. 244-260.

Li S., Kang Q., Baeyens J., Zhang H. L., Deng Y. M. Hydrogen Production: State of Technology // IOP Conf. Series: Earth and Environmental Science. 544 0012011, 2020, pp. 1-8.

Ahmed Mohmmed H., Anssari M.O.H. Electricity generation by using a hybrid system (photovoltaic and fuel cell) // Journal of Engineering and Applied Sciences, 2019, no. 14, pp. 4414-4418. DOI:10.3923/jeasci.2019.4414.4418.

Tarhan C. and Çil M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 2021 40, pp. 102676.

Rasul M.G., Hazrat M.A., Sattar M.A., Jahirul M.I. and Shearer M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Conversion and Management, 2022, 272, p. 116326.

Report prepared byInternational Energy Agency: IEA for the G20, Japan. The Future of Hydrogen // International Energy Agency IEA, 2019, pp. 1-284.

Abd Ali L.M., Al-Rufaee F.M., Kuvshinov V.V. et al. Study of Hybrid Wind - Solar Systems for the Iraq Energy Complex // Applied Solar Energy, 2020, vol. 56, no. 4, pp. 284-290.

Avelar A.M., de Camargo F., da Silva V.S.P., Giovedi C., Abe A. and Mourão M.B. Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance. Nuclear Engineering and Technology, 2023, 55(1), pp. 156-168.

Published

09.01.2024

How to Cite

Mezaal Н. А., Kalyutik А. А., Salman А. С., & Abdali Л. М. (2024). Comparison of Various Hydrogen Production Technologies from Natural Gas. Intellekt. Sist. Proizv., 21(4), 101–108. https://doi.org/10.22213/2410-9304-2023-4-101-108

Issue

Section

Articles