Production Planning Problem with Work Completion Time Uncertainty
DOI:
https://doi.org/10.22213/2410-9304-2024-1-48-55Keywords:
optimization problem, petri nets, genetic algorithm, production scheduleAbstract
Planning is a prerequisite for improving the industrial efficiency of any production. The main tasks in planning are to minimize time and total costs. The efficiency of equipment utilization depends on workflow management of certain types of machine fleet in the production of multi-item products. Skilled planning reduces costs of raw material and componentrelocation and stacking. One of the important issues is the production scheduling for the following process flow. There are several types of equipment or machines. Machines can operate in parallel. There may be several machines of the same type. The equipment is used to process some items or parts of various types. Each part takesspecific time to be processed on a particular machine type. In addition, according to the manufacturing process technology, there is a sequence of operations on a particular machine type for each part. A machine can process only one partat a time. Limited stacking placefor the parts to be processed may become an extra condition. The article sets the schedulingtask for a given number of different contentworks processingon a given sequence of machines of different types. A machine refers to any device used to perform a process operation related to the operation. Each product or work has an individual sequence of technological operations. The possibility of componentparallel processing in batches intended for the assembly of different products is taken into account withtime uncertainty in the task is allowed. To solve the problem of minimizing finite time, a genetic algorithm is used with the representation of the chromosome in the form of a Petri network. The calculations showed that uncertainties lead to an increase in the release time of products.References
Алтунин А. Е., Семухин М. В. Модели и алгоритмы принятия решений в нечетких условиях: монография. Тюмень: Изд-во ТГУ, 2000. 352 с.
Котов В. Е. Сети Петри: монография. М.: Наука, Главная редакция физико-математической литературы, 1984. 160 с.
Оптимизация технологической составляющей при синтезе структур-стратегий производственных систем машиностроения / А. И. Коршунов, А. П. Кузнецов, В. А. Тененёв, А. В. Тененёва, Б. А. Якимович // Интеллектуальные системы в производстве. 2010. № 2 (16). С. 17-30. ISSN 1813-7911.
L. Wang, Liang Zhang. D.-Z. Zheng. A class of hypothesis-test-based genetic algorithms for flow shop scheduling with stochastic processing time. January 2005The International Journal of Advanced Manufacturing Technology 25(11):1157-1163. DOI:10.1007/s00170-003-1961-y.
Jiayu Shen1, Yuanguo Zhu. A Single Machine Scheduling with Periodic Maintenance and Uncertain Processing Time / International Journal of Computational Intelligence Systems Vol. 13(1), 2020, pp. 193-200.
Zunpu Han, Yong Wang & De Tian.Ant colony optimization for assembly sequence planning based on parameters optimization. Frontiers of Mechanical Engineering, 2021, Vol. 16, Issue 2: 393 - 409DOI: doi.org/10.1007/s11465-020-0613-3.
Blum C. ACO applied to group shop scheduling: a case study on intensification and diversification, Proceedings of ANTS 2002, vol. 2463 of Lecture Notes in Computer Science, pp.14-27, 2002.
Mustafa A. Qamhan, Ammar A. Qamhan, Ibrahim M. Al-Harkan and Yousef A. Alotaibi. Mathematical Modeling and Discrete Firefly Algorithm to Optimize Scheduling Problem with Release Date, Sequence-Dependent Setup Time, and Periodic Maintenance // Mathematical Problems in Engineering Volume 2019, Article ID 8028759, 16 pages, doi.org/10.1155/2019/8028759.
Harwin Kurniawan, Tanika D. Sofianti, Aditya Tirta Pratama, Prianggada Indra Tanaya. Optimizing Production Scheduling Using Genetic Algorithm in Textile Factory // Journal of System and Management Sciences. 2014. Vol. 4, No. 4, pp. 27-44. ISSN 1816-6075.
Dean J. S. (2008). Staff Scheduling by a Genetic Algorithm with a TwoDimensional Chromosome Structure. Parkville: Park University, Information and Computer Science Department, p. 15.
Куцелап К. А., Вороненко В. П., Шалдов А. Э. Составление производственного расписания с использованием алгоритма направленного случайного поиска // Известия ТулГУ. Технические науки. 2015. Вып. 12. Ч. 1. С. 14-22. ISSN 2071-6168.
David R. Morrisona, Sheldon H. Jacobsonb, Jason J. Sauppec, Edward C. Sewell. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. DiscreteOptimization 19 (2016) 79-102.doi.org/10.1016/j.disopt.2016.01.005.
Zhang A., Wang H., Chen Y., Chen G. Scheduling jobs with equal processing times and a single server on parallel identical machines, Discrete Appl. Math. 213 (2016), 196-206.
Tan Z., Chen Y., Zhang A. On the exact bounds of SPT for scheduling on parallel machines with availability constraints, Int. J. Prod. Econ. 146 (2013), 293-299.
Biao W., Yao E. Lower bounds and modified LPT algorithm for k-partitioning problems with partition matroid constraint, Appl. Math. 23 (2008), 1-8.
Mousavi S. M., Zandieh M. &Amiri, M. An efficient bi-objective heuristic for scheduling of hybrid flow shops.Int J Adv. Manuf. Technol. 54, 287-307 (2011). https://doi.org/10.1007/s00170-010-2930-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Станислав Игоревич Великий, Максим Михайлович Горохов, Валентин Алексеевич Тененев
This work is licensed under a Creative Commons Attribution 4.0 International License.