Mathematical Models and Algorithms for Failed Equipment Planning Replacement

Authors

  • M. Y. Zakharychev Kalashnikov Izhevsk State Technical University
  • V. A. Tenenev Kalashnikov Izhevsk State Technical University
  • S. V. Vologdin Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2024-4-73-80

Keywords:

algorithms, queuing theory, fuzzy logic, stocks, optimization, mathematical model, equipment failures

Abstract

For the operability of deep well pump units under the conditions of oil and gas field equipment rental, it is necessary to plan the required resources. Failed equipment must be replaced with new one. If it is possible to repair the items, they are sent to repair service points. A review of literary sources on the subject of the study and the problem statement are provided. A large number of equipment application points and real operating conditions introduce great uncertainty into planning the failed equipment replacement. The value of the failure rate is a random variable. A mathematical model to manage the process of failed equipment replacing has been developed. Fuzzy logic methods have been used to take into account the uncertainty. Characteristics of fuzzy failure flow have been determined,based on the available information on failures. To perform computational operations, algorithms for working with fuzzy variables have been developed based on, in general case, asymmetric, and parabolic membership functions. The operations of addition, subtraction, multiplication, division, and exponentiation of fuzzy numbers are determined using interval arithmetic andα-cut method. The amount of equipment stock is determined by a fuzzy number. The use of a hybrid genetic algorithm provided an optimal solution to the optimization problem equipment replacement management. The calculation results are given. When solving the fuzzy optimization problem in comparative operations, the rank of the fuzzy number was calculated. The concept of centroid defuzzification of the fuzzy number is used to determine the rank value. The diagram of the fuzzy number membership function and the diagram of the optimization problem objective function: total costs were constructed. Compared with the optimization problem clear formulation, the total costs in the fuzzy formulation turned out to be higher, also the value of the safety stock was determined .

Author Biographies

M. Y. Zakharychev, Kalashnikov Izhevsk State Technical University

Post-graduate

V. A. Tenenev, Kalashnikov Izhevsk State Technical University

DScin Physics and Mathematics, Professor

S. V. Vologdin, Kalashnikov Izhevsk State Technical University

DSc. in Engineering, Associate Professor

References

Тененев В. А., Шаура А. С. Решение задач нелинейного программирования общего вида генетическим алгоритмом // Интеллектуальные системы в производстве. 2019. Т. 17, № 4. С. 137-142. DOI: 10.22213/2410-9304-2019-4-137-142.

Тененев В. А., Якимович Б. А. Генетические алгоритмы в моделировании систем. Ижевск : Изд-во ИжГТУ, 2010. 308 с. IBSN 978-5-7526-0472-0.

Amit Nalvade, Ashok Mhaske, Sagar Waghmare, Smt. ShilpaTodmal. Solving Fuzzy Game Theory Problem using Pentagonal Fuzzy Numbers and Hexagonal Fuzzy Number // International Journal of Mathematics Trends and Technology.2023. Vol. 69 (2). Pp. 74-79. DOI10.14445/22315373/IJMTT-V69I2P510.

Hamed Fazlollahtabar, Hadi Gholizadeh. Economic Analysis of the M/M/1/N Queuing System Cost Model in a Vague Environment // International Journal of Fuzzy Logic and Intelligent Systems. 2019. Vol. 19, no. 3.Pp. 192-203. DOI 10.5391/IJFIS.2019.19.3.192.

S. Adilakshmi, N. Ravi Shankar. A New Ranking in Hexagonal Fuzzy number by Centroid of Centroids and Application in Fuzzy Critical Path / RT&A. 2021. Vol. 16,no. 2 (62). Pр.124-135.DOI 10.24412/1932-2321-2021-262-124-135.

V. Lakshmana Gomathi Nayagam, Jagadeeswari Murugan.Hexagonal fuzzy approximation of fuzzy numbers and its applications in MCDM /Complex & Intelligent Systems. 2021. Vol. 7. Pp. 1459-1487. DOI 10.1007/s40747-020-00242-4.

Kirtiwant P. Ghadle, Priyanka A. Pathade. Solving Transportation Problem with Generalized Hexagonal and Generalized Octagonal Fuzzy Numbers by Ranking Method // Global Journal of Pure and Applied Mathematics.2017. Vol. 13, no. 9. Pp. 6367-6376.

Shrivastava Bhavana, Agrawal Dr, KumarSanjeet. Fuzzy linear programming problem with -cut and roubast ranking methods // International Journal of Statistics and Applied Mathematics.2022. No. 7 (2). Pp. 57-62. DOI 10.13140/RG.2.2.29698.96962.

Ziqan Abdelhalim, Ibrahim Sabreen, Marabeh Mohammad, Qarariyah Ammar. Fully fuzzy linear systems with trapezoidal and hexagonal fuzzy numbers // Granular Computing. 2022. Vol. 7. Pp. 229-238. DOI 10.1007/s41066-021-00262-6.

Mukherjee Asesh, Gazi Kamal Hossain, Salahshour Soheil, Ghosh Arijit, Mondal Sankar. A Brief Analysis and Interpretation on Arithmetic Operations of Fuzzy Numbers // Results in Control and Optimization.2023. Vol. 13. 100312. DOI 10.1016/j.rico.2023. 100312.

Chutia Rituparna. Ranking interval type-2 fuzzy number based on a novel value-ambiguity ranking index and its application in risk analysis // Soft Computing.2021. Vol. 25. Pp. 8177-8196. DOI 10.1007/s00500-021-05743-z.

Jana Chiranjibe, Pal Madhumangal, Muhiuddin G., Liu Peide. Fuzzy Optimization, Decision-making and Operations Research: Theory and Applications. 2023. DOI 10.1007/978-3-031-35668-1.

Dutta Putul, Sikdar Karabi. A Reviewon Impact of Shape function on Fuzzy Queueing Systemusing DSW Algorithm // International Journal of Aviation Technology Engineering and Management. 2022. Vol. 3, no. 3. Pp. 1-7.

Вилков В. Б., Кальницкий В. С., Молоков И. Е. Нечеткие системы массового обслуживания : монография. СПб. : Астерион, 2022. 184 с.

Захарычев М. Ю., Тененев В. А., Вологдин С. В. Модель динамического управления запасами для замены оборудования при вероятностном распределении отказов // Интеллектуальные системы в производстве. 2023. Т. 21, № 4. С. 95-100. DOI 10.22213/2410-9304-2023-4-95-100.

Published

27.12.2024

How to Cite

Zakharychev М. Ю., Tenenev В. А., & Vologdin С. В. (2024). Mathematical Models and Algorithms for Failed Equipment Planning Replacement. Intellekt. Sist. Proizv., 22(4), 73–80. https://doi.org/10.22213/2410-9304-2024-4-73-80

Issue

Section

Articles