Software Prototype Development for Production Plan Management of an Enterprise Based on a Genetic Algorithm
DOI:
https://doi.org/10.22213/2410-9304-2025-1-65-72Keywords:
optimization, equipment, reserves, production plan, genetic algorithm, mechanical engineering, information systemAbstract
The article discusses the process of developing a software prototype of an information system for production plan management at mechanical engineering enterprises. The main goal of the system is to minimize equipment and warehouse stocks downtime, which is an important factor in a competitive market. To achieve this goal, a genetic algorithm is used, which helps optimize the process of production taskplanning. The genetic algorithm takes into account a wide range of factors, such as the resourcediversity, enterprise financial constraints, including its own funds and the need to attract credit resources to fulfill large orders. This makes the system versatile and flexible depending on the parameters of the enterprise, such as production output, availability of resources and financial capacity. Special attention is paid to the development of the fitness function, which describes the desired result of the system. It includes optimization of resource utilization and minimization of financial costs. The article also describes a system of constraints that takes into account the real situation at the enterprise, including resource reserves, financial and production capacities. The evolutionary mechanism of the genetic algorithm allows the system to select optimal solutions for various production scenarios. The results of the study show that the proposed system is highly flexible and accurate in adapting to various financial and production conditions. During the work on the system, several scenarios were considered that allow to determine how the optimization results change with different initial data. The findings confirm that the use of the developed information system allows to reduce production costs and improve the enterprise efficiency, due to more rational resourceutilization and minimization of equipment downtime.References
Wang Kung-Min, Wang Kung-Jeng, Chen, Chou-Cheng. Capacitated production planning by parallel genetic algorithm for a multi-echelon and multi-site TFT-LCD panel manufacturing supply chain // Applied Soft Computing. 2022. Т. 127. DOI 109371. 10.1016/j.asoc.2022.109371.
Системный анализ, математическое моделирование и оптимизация процесса формирования производственного расписания обработки металлоконструкций / А. А.Большаков, Л. А. Слободянюк, О. Е. Шашихина, Я. А. Ковальчук // Вестник Технологического университета. 2021. Т. 24, № 7. С. 84-92.
Kreissner K. MARTin - an open-source platform for microarray analysis // Frontiers in Bioinformatics. 2024. Т. 4. DOI 10.3389/fbinf.2024.1329062.
Автоматизация и управление производством в машиностроении / О. И. Борискин, С. Н. Ларин, Г. А. Нуждин, М. Г. Нуждин // Известия ТулГУ. 2022. № 4. С. 544-551. DOI 10.24412/2071-6168-2022-4-544-551.
İren E., İren G., Kantarcı A. Data Driven Software Testing with Selenium Apache POI Tool // IJMSIT. 2021. Т. 5, № 2. С. 136-139.
Шегай М. В., Попова Н. Н. Генетический алгоритм оптимизации путеводных деревьев // Вестник Московского университета. 2023. Т. 15, №1. С. 54-61. DOI 1055959/MSU/0137-0782-15-2023-1-54-61.
Murphy J., Desell T. Minimizing the EXA-GP Graph-Based Genetic Programming Algorithm for Interpretable Time Series Forecasting // Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2024. С. 1686-1690. DOI 10.1145/3638530.3664173.
Vats P., Mandot M. AVISAR-An Automated Framework for Test Case Selection & Prioritization using GA for OOS // International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2020. Т. 9, №6. С. 1-8. DOI 10.35940/ijitee.F4570.049620.
Charatan Quentin, Kans Aaron.Introducing JavaFX // Programming in Two Semesters. 2022. С. 557-603. DOI 10.1007/978-3-031-01326-3_23.
Johnson Omoniyi, Olamijuwon Jeremiah, Samira Zein, Ekpobimi Harrison. Developing advanced CI/CD pipeline models for Java and Python applications: A blueprint for accelerated release cycles // Computer Science & IT Research Journal. 2024. № 5, С. 2645-2663. DOI 10.51594/csitrj.v5i12.1758.
Keshani Mehdi, Velican Tudor-Gabriel, Bot Gideon, Proksch Sebastian. AROMA: Automatic Reproduction of Maven Artifacts // Proceedings of the ACM on Software Engineering. 2024. № 1, С. 836-858. DOI 10.1145/3643764.
Juneau Josh, Manelli Luciano. Enhancements from Java 9 Through Java 17 // Java 17 Recipes. 2022. С. 49-78. DOI 10.1007/978-1-4842-7963-2_2.
Воробьев М. С., Вахрушева Е. Н., Вологдин С. В. Модель оптимизации выпуска продукции машиностроительного предприятия в условиях неопределенности спроса // Интеллектуальные системы в производстве. 2024. Т. 22, № 1, С. 56-61. DOI 10.22213/2410-9304-2024-1-56-61.
Limkar Karishma, Tamboli Fatima. Impact of Automation // International Journal of Scientific Research in Modern Science and Technology. 2024. №. 3, С. 13-17. DOI 10.59828/ijsrmst.v3i8.243.
Cheng Xin, Lyandres Evgeny, Zhou Kaiguo, Zhou Tong. Labor-Replacing Automation and Finance // Management Science. 2024 DOI 10.1287/mnsc.2022.02658.
Weyrich, Michael. What Is Automation Technology? Basic Terms and Concepts of Automation Technology // Industrial Automation and Information Technology. 2024. С. 9-36. DOI 10.1007/978-3-662-69243-1_2.
Del Gallo, M.; Mazzuto, G.; Ciarapica, F.E.; Bevilacqua, M. Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review // Electronics. 2023. №12(23). DOI: 10.3390/electronics12234732.
Liu Jianxu, Shen Zhidan, Li Yansong. Digital Economy, Labor Mobility and Industrial Structure Optimization - Empirical Analysis Based on Mediating Effect and Threshold Effect // Applications of Optimal Transport to Economics and Related Topics. 2024. С. 89-104. DOI 10.1007/978-3-031-67770-0_8.
Sobhani Masih. Industrial Automation and AI in industry. 2024. DOI 10.13140/RG.2.2.29988.59529.
Song Erwei, Wang Mingmei, Zhou Xiaoyu, Wang Erqiang, Guo Cun-Yue. Multi-Objective Optimization and Design for Industrial Vinyl Chloride Reactor by Hybrid Model // Processes. 2024. №12. DOI 10.3390/pr12112378.
Zhang Ruochen, Zhu Bin. A multiobjective evolutionary algorithm for optimizing the small-world property // PLoS ONE. 2024. Т. 19, № 12. С. 1-5. DOI 10.1371/journal.pone.0313757.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Андрей Владимирович Дёмышев, Михаил Сергеевич Воробьев, Данил Вячеславович Целищев, Сергей Валентинович Вологдин

This work is licensed under a Creative Commons Attribution 4.0 International License.