Modern Approaches To Optimizing Technical Documentation: challenges and solutions for unmanned aircraft systems

Authors

  • E. V. Isaeva Perm State University
  • A. V. Khodasevich National University of Science and Technology MISIS
  • Y. M. Isaeva Perm State University

DOI:

https://doi.org/10.22213/2410-9304-2025-2-93-103

Keywords:

natural language processing, knowledge graphs, machine learning, text restructuring, technical documentation, UAS certification, automation, UAS standardisation, unmanned aircraft systems

Abstract

This article discusses the potential of automation in restructuring the technical documentation required for certification of unmanned aircraft systems (UAS). Certification is a critical regulatory process to ensure compliance with national and international safety standards. Preparing technical documentation for certification is time-consuming, error-prone, and costly process, with manual methods significantly reducing efficiency. These shortcomings pose challenges for mass UAS certification, which is becoming increasingly relevant due to the rapid growth of the industry. This article reviews current technologies that can be used to address these challenges, including machine learning, natural language processing (NLP), knowledge graphs, and semantic analysis. Tools such as EasyOCR, OnToCode, and advanced models such as BERT are reviewed in terms of their suitability for text recognition, data mining, and automatic restructuring of complex technical documents. In addition, the study provides examples of possible practical applications of these methods, focusing on their feasibility to standardise document preparation, reduce human errors and support mass certification of UAS. Challenges such as lack of harmonisation of document formats, integration of legacy systems, and regulatory dynamism are also discussed. The study concludes that despite the emerging opportunities for automation to optimise certification processes, its practical implementation requires further study and collaboration with regulators. The proposed review serves as a conceptual framework that highlights the potential benefits and limitations of integrating automation into the UAS certification workflows and paves the way for future advances in this critical area.

Author Biographies

E. V. Isaeva, Perm State University

PhDin Linguistics, Associate Professor

A. V. Khodasevich, National University of Science and Technology MISIS

Student

Y. M. Isaeva, Perm State University

Student

References

Zhao T., Yurtsever E., Paulson J., Rizzoni G. Formal Certification Methods for Automated Vehicle Safety Assessment // IEEE Transactions on Intelligent Vehicles. 2023. Т. 8, № 1. Т. 232-249. DOI: 10.1109/TIV.2022.3170517.

Герус М. И., Миронов П. Н. Автоматизированная система генерации программной документации // Nanoindustry Russia. 2020. Т. 96, № 3. С. 106-110. DOI: 10.22184/1993-8578.2020.13.3s.106.110.

Timakov K. Research and development of methods for automating the design of scientific papers according to specified requirements // International Conference on Digital Transformation: Informatics, Economics, and Education (DTIEE2023) / ed. Gibadullin A., Khalmatjanova G. SPIE, 2023. Т. 15. DOI: 10.1117/12.2680718

Павлов Д. А. Автоматическая вёрстка и оформление научной и программной документации // Компьютерные инструменты в образовании. 2018. № 6. Т. 39-46. DOI: 10.32603/2071-2340-2018-6-39-46

Paetzold G. H., Alva-Manchego F., Specia L. MASSAlign: Alignment and Annotation of Comparable Documents // AFNLP. 2017. Т. 1-4.URL: https://aclanthology.org/I17-3001 (дата обращения 27.01.2025)

Schäfer P. OnToCode: Template-based code-generation from ontologies // J Open Source Softw. 2019. Т. 4, № 40. Т. 1513. DOI: 10.21105/joss.01513.

Ixebayeva Z.S. et al. Conceptual Model for Automatic Proofreading of Technical Documents // Revue d'Intelligence Artificielle. 2023. Т. 37, № 1. С. 165-170. DOI: 10.18280/ria.370120.

Pérez-Suárez A., Martínez-Trinidad J., Carrasco-Ochoa J., Medina-Pagola J. OClustR: A new graph-based algorithm for overlapping clustering // Neurocomputing. Elsevier, 2013. Т. 121. С. 234-247.DOI: 10.1016/J.NEUCOM.2013.04.025

Mani N., Harikumar S. A Knowledge Graph Approach towards Re-structuring of Scientific Articles // 2022 International Conference on Connected Systems & Intelligence (CSI). IEEE, 2022. С. 1-8. DOI: 10.1109/CSI54720.2022.9923954

Dong Z. et al. Transformation from human-readable documents and archives in arc welding domain to machine-interpretable data // Comput Ind. Elsevier, 2021. Т. 128. С. 103439. DOI: 10.1016/ J.COMPIND.2021.103439.

Dikilitaş Y., Dikilitaş Y., ÇakalÇ,.Okumuş A., Yalçın H., Yıldırım E., Ulusoy Ö., Macit B., Kırkaya A., Yalçın Ö., Erdoğmuş E., Sayar A. Performance Analysis for Web Scraping Tools: Case Studies on Beautifulsoup, Scrapy, Htmlunit and Jsoup. 2024. P. 471-480.

Pichiyan V., Muthulingam S., Sathar G., Nalajala S., Akhil C., Das M. Web Scraping using Natural Language Processing: Exploiting Unstructured Text for Data Extraction and Analysis // Procedia Comput Sci. 2023. Vol. 230. P. 193-202.DOI: 10.1016/ j.procs.2023.12.074.

Rizquina A. Z., Ratnasari C. I. Implementasi Web Scraping untukPengambilan Data Pada Website E-Commerce // JurnalTeknologi DanSistemInformasiBisnis. 2023. Vol. 5, № 4. P. 377-383.DOI: 10.47233/jteksis.v5i4.913.

Sagade O. D., Sagade D. D. Restaurant Data Scraper: An Automated Tool for Extracting Restaurant Information Using Python Html, CSS and Selenium // Interantional journal of scientific research in engineering and management. 2024. Vol. 08, № 11. P. 1-6. DOI: 10.55041/IJSREM39222.

Kleimenkin D. V., Dmitrienko N. A. Using OCR for Russian texts // Тенденции развития науки и образования. 2022. Vol. 92, № 10. P. 9-12. DOI: 10.18411/trnio-12-2022-456.

Chopra S. Leveraging YOLO Algorithm and PaddleOCR in Machine Learning Applications // Int J Res Appl Sci Eng Technol. 2024. Vol. 12, № 4. P. 4576-4584.DOI: 10.22214/ijraset.2024.60850.

Biró A., Cuesta-Vargas A., Martín-Martín J., Szilágyi L., Szilágyi S. Synthetized Multilanguage OCR Using CRNN and SVTR Models for Realtime Collaborative Tools // Applied Sciences. 2023. Vol. 13, № 7. P. 4419.DOI:10.3390/app13074419.

Park Y., Shin Y. Gradual OCR: An Effective OCR Approach Based on Gradual Detection of Texts // Mathematics. 2023. Vol. 11, № 22. P. 4585.DOI: 10.3390/math11224585.

Shi B., Bai X., Yao C. An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition // IEEE Trans Pattern Anal Mach Intell. IEEEComputerSociety, 2015. Vol. 39, № 11. P. 2298-2304.DOI: 10.1109/TPAMI.2016.2646371.

Baek Y., Lee B., Han D., Yun S., Lee H. Character Region Awareness for Text Detection // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2019. Vol. 2019-June. P. 9357-9366. DOI: 10.1109/CVPR.2019.00959.

Shi C., FunabikiN., Huo Y., Mentari M., Suga K., Toshida T. A Proposal of Printed Table Digitization Algorithm with Image Processing // Algorithms. 2022. Vol. 15, № 12. P. 471. DOI: 10.3390/a15120471.

Arslan H. End to End Invoice Processing Application Based on Key Fields Extraction // IEEE Access. 2022. Vol. 10. P. 78398-78413. DOI: 10.1109/ACCESS.2022.3192828.

Koponen J., Haataja K., Toivanen P. Novel Deep Learning Application: Recognizing Inconsistent Characters on Pharmaceutical Packaging // F1000Research 2024 12:427. F1000 Research Limited, 2024. Vol. 12. P. 427. DOI:10.3390/ healthcare11121769.

Lee S.-Y., Park J., Yoon J., Lee J. A Validation Study of a Deep Learning-Based Doping Drug Text Recognition System to Ensure Safe Drug Use among Athletes // Healthcare. 2023. Vol. 11, № 12. P. 1769. DOI: 10.3390/healthcare11121769.

Ponnuru M., Ponmalar S., Likhitha A., SreeT., Chaitanya G. Image-Based Extraction of Prescription Information using OCR-Tesseract // Procedia Comput Sci. Elsevier, 2024. Vol. 235. P. 1077-1086.DOI:10.1016/J.PROCS.2024.04.102.

Бобров К. А., Шульман В. Д., Власов К. П. Анализ технологий распознавания текста из изображений // Международный журнал гуманитарных и естественных наук. 2022. № 3-2. C. 124-128.

Hassan F. ul, Le T. Automated Requirements Identification from Construction Contract Documents Using Natural Language Processing // Journal of Legal Affairs and Dispute Resolution in Engineering and Construction. 2020. Т. 12, № 2. DOI: 10.1061/(ASCE)LA.1943-4170.0000379.

Wu Z., Ma G. NLP-based approach for automated safety requirements information retrieval from project documents // Expert Syst Appl. Pergamon, 2024. Vol. 239. P. 122401. DOI: 10.1016/J.ESWA.2023.122401.

Moen H., Hakala K., Peltonen L., Matinolli H., Suhonen H., Terho K., Danielsson-Ojala R., Valta M., Ginter F., Salakoski T., Salanterä S. Assisting nurses in care documentation: from automated sentence classification to coherent document structures with subject headings // J Biomed Semantics. 2020. Т. 11, № 1. С. 10. DOI: 10.1186/s13326-020-00229-7.

Построение графов знаний нормативной документации на основе семантического моделирования и автоматического извлечения терминов / Д. B. Муромцев, И. А. Шилин, Д. А. Плюхин, И. Р. Баймуратов, Р. Р. Хайдарова, Ю. Ю. Дементьева, Д. А. Ожигин, Т. А. Малышева // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 2. С. 256-266. DOI: 10.17586/2226-1494-2021-21-2-256-266.

Published

06.07.2025

How to Cite

Isaeva Е. В., Khodasevich А. В., & Isaeva Я. М. (2025). Modern Approaches To Optimizing Technical Documentation: challenges and solutions for unmanned aircraft systems. Intellekt. Sist. Proizv., 23(2), 93–103. https://doi.org/10.22213/2410-9304-2025-2-93-103

Issue

Section

Articles