Software Implementation of Statistical Data Processing Systems for the Production Sector of the Penitentiary System

Authors

  • D. S. Ponomarev Kalashnikov Izhevsk State Technical University; Research Institute of the Federal Penitentiary Service

DOI:

https://doi.org/10.22213/2410-9304-2025-3-117-124

Keywords:

statisticsds, systems analysis, penitentiary system, production, information system

Abstract

The article considers the results of the development of an information system for working with statistical data of the industrial penitentiary sector. The relevance of the work is due to both the regulatory and legal documentation and the scale of the penitentiary system production organized in the territory of the Russian Federation: according to official current data, the total volume of penitentiary production amounted to 44.3 billion rubles. The analysis of the reporting statistical forms of the penitentiary system was carried out. The results of the set-theoretical and information-theoretical analysis of statistical data of the industrial penitentiary sector are presented. It was established that for the industrial sector of the penitentiary system, the study of labor resources is one of the most important components (in turn, it can include parameters that reflect the results of educational work, medical and sanitary support of the special contingent). Based on the results obtained, solutions were developed for the formation of database architectures for statistical analysis of the activities of the industrial sector. The methods, approaches and technical solutions that were applied in the development are presented: principles of the object-oriented approach, the functional approach, information system design patterns, SOLID principles. The features of using such libraries as Pandas, SciKit-Learn, TensorFlow, Keras, CatBoost and Plotly in data processing are considered. Approaches to the development of user interfaces are given. Approaches to the deployment of an information system using web technologies are proposed. The development of an access control system for the user of the information system is considered. The practical significance of the work lies in the implementation of the system in the divisions of the Federal Penitentiary Service of Russia, where it can be used to analyze production processes, predict risks and support decision-making. In the future, it is planned to continue research in the field of system scaling, ensuring information security and maintaining software life cycles.

Author Biography

D. S. Ponomarev, Kalashnikov Izhevsk State Technical University; Research Institute of the Federal Penitentiary Service

PhD in Engineering

References

Toras Pangidoan Batubara, Syahril Efendi, Erna Budhiarti Nababan, Analysis Performance BCRYPT Algorithm to Improve Password Security from Brute Force // Journal of Physics: Conference Series. 2021. 1811 (2021): 012129. doi:10.1088/1742-6596/1811/1/012129

Erna Nababan. Analysis Performance Bcrypt Algorithm to Improve Password Security from Brute Force // Journal of Physics Conference Series. 2021. 1811(1): 012129. doi:10.1088/1742-6596/1811/1/012129

Yaganteeswarudu Akkem, Biswas Saroj Kumar, Aruna Varanasi. Streamlit Application for Advanced Ensemble Learning Methods in Crop Recommendation Systems - A Review and Implementation // Indian Journal of Science and Technology. 2023. Vol.16(48), P. 4688-4702.

Chanin Nantasenamat, Avratanu Biswas, J.M. Nápoles-Duarte, Mitchell I. Parker, Roland L. Dunbrack Jr. Building Bioinformatics Web Applications with Streamlit // Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development. 2023. №27. P. 679-699.

Samira Gholizadeh. Top Popular Python Libraries in Research // Journal of Robotics and Automation Research. 2022. 3(2). P. 142-145.

Massalha E., Sharon A., Oren D., Fishman B., Segev A., Matetzky Sh., Maor E. A gradient boosting machine learning model enhances mortality prediction in non-st-segment elevation myocardial infarction // Journal of the American College of Cardiology. 2022. Т. 79. № 9. С. 1131.

Sun Ya., Zhang F., Lin H., Xu Sh. A forest fire susceptibility modeling approach based on light gradient boosting machine algorithm // Remote Sensing. 2022. Т. 14, № 17. P. 4362.

Song Z., Xia J., Wang G., She D., Hu C., Hong S. Regionalization of hydrological model parameters using gradient boosting machine // Hydrology and Earth System Sciences. 2022. Т. 26. № 2. P. 505-524.

Кирюшин Ю. Н., Михеев М. Ю. Построение деревьев решений при помощи градиентного бустинга // Современные информационные технологии. 2023. № 37 (37). С. 40-43.

Королев Н. С., Сенько О. В. Метод повышения эффективности обучения градиентного бустинга, основанный на модифицированных функциях потерь // Автоматика и телемеханика. 2022. № 12. С. 78-88.

Qian Zh., Sun K. Extensive analysis of rain in Australia by exploratory data analysis, feature engineering and modeling // Theoretical and Natural Science. 2023. Т. 7. № 1. С. 63-71.

GrihaTofik Isa I., Zulkarnaini Z., Novianti L., Elfaladonna F., Agustri S. Exploratory Data Analysis (EDA) dalam Dataset Penerima an Mahasiswa Baru Universitas XYZ Palembang / Smart Comp: Jurnalnya Orang Pintar Komputer. 2023. Т. 12. № 3. С. 600-609.

Sanosra A., Maimun A., Satoto E.B., Qomariah N. Role of key performance indicators and compensation in improving employee integrity and performance / International Journal of Economics and Management Studies. 2022. Т. 9. № 2. С. 35-43.

Uzule K., Zarina V., Shina I. Fostering performance management by identifying key performance indicators for human capital in integrated reporting // Business: Theory and Practice. 2024. Т. 25. № 2. С. 420-433.

Graefe G. More modern b-tree techniques // Foundations and Trends in Databases. 2024. Т. 13. № 3. С. 169-249.

Дехтиевский С. А., Бударный Г. С. Принципы SOLID и их применение в разработке программного обеспечения // Научный аспект. 2024. Т. 43, № 4. С. 5635-5641.

Федорова О. Single responsibility principle // Системный администратор. 2024. № 1-2 (254-255). С. 62-63.

Шмаков С. Э., Щенникова Е. В., Определенцева А. Е. Взаимодействие паттернов проектирования для эффективной web-разработки // Ученые записки УлГУ. Серия: Математика и информационные технологии. 2021. № 2. С. 90-96.

Published

08.10.2025

How to Cite

Ponomarev Д. С. (2025). Software Implementation of Statistical Data Processing Systems for the Production Sector of the Penitentiary System. Intellekt. Sist. Proizv., 23(3), 117–124. https://doi.org/10.22213/2410-9304-2025-3-117-124

Issue

Section

Articles