Production Plan Optimization Solution of a Machine-building Enterprise with Assisted by a Lending Institution

Authors

  • E. N. Vakhrusheva Kalashnikov Izhevsk State Technical University
  • S. V. Vologdin Kalashnikov Izhevsk State Technical University
  • I. A. Vorobev Kalashnikov Izhevsk State Technical University
  • I. A. Vakhrushev Kalashnikov Izhevsk State Technical University
  • A. O. Nabokov Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2025-1-46-53

Keywords:

mechanical engineering, demand, forecasting, plan, optimization, algorithm

Abstract

The article implements a solution to theproduction planoptimizationproblem of a machine-building enterprise, with regard to a combination of factors such as enterprise financial capabilities, including the possibility of using a bank loan, the enterprise production capacity, limited resources, as well as the uncertainty of demand in the perspective of planning for a period of more than three months. This problem is solved in two ways: when the bank interest rate is a constant value (then the mathematical model is a linear programming problem), and when the interest rate decreases with increasing loan size (in this case, the mathematical model is a nonlinear programming problem). A program has been developed to predict the demand for products, which is based on statistical data on machine-building enterprise sales during four years. Adaptive methods ARMA, ARIMA and SARIMA were chosen for forecasting. In each case, the method is selected after data analyzing. An algorithm for optimization problem solution in two scenarios has been developed: linear and nonlinear, and a program implementing this algorithm has been developed. The initial data of the tasks being solved take into account the cost of the machine-building enterprise products and the information that the average margin profit ranges from 20 to 55 percent. The interest rate of PJSC «Sberbank of Russia» was chosen as the values of the loan interest rate, both in the linear and non-linear models. The program that implements the optimization task has the ability to read the source data from an Excel document, which is very convenient in case of a large amount of data.

Author Biographies

E. N. Vakhrusheva, Kalashnikov Izhevsk State Technical University

PhD Econimics, Associate Professor

S. V. Vologdin, Kalashnikov Izhevsk State Technical University

DSc in Engineering, Associate Professor

I. A. Vorobev, Kalashnikov Izhevsk State Technical University

PhD in Engineering

I. A. Vakhrushev, Kalashnikov Izhevsk State Technical University

PhD in Engineering

A. O. Nabokov, Kalashnikov Izhevsk State Technical University

Student

References

Айвазян Г. В., Стонякин Ф. С., Пасечнюк Д. А. Адаптивный вариант алгоритма Франка - Вульфа для задач выпуклой оптимизации // Программирование. 2023. № 6. С. 14-26. DOI 10.31857/S0132347423060031.

Лобанов В. С. Метод линеаризации для задач условной оптимизации. Алгоритм Франка - Вульфа // Молодой ученый. 2020. № 3 (293). С. 8-12.

Семахин А. М. Метод Франка - Вульфа в моделировании информационных систем // Вестник Югорского государственного университета. 2024. Т. 20, № 2. С. 113-119. DOI 10.18822/ byusu202402113-119.

Voronkin V. A. Development of task batch execution optimization system in multi-stage systems using branch and bound method // Актуальные исследования. 2024. No. 12-1 (194). P. 31-40.

Бирюк А. Н., Бирюков Д. В. Экономико-математическая модель оптимизации финансовых и временных ресурсов для обеспечения экономической безопасности при эксплуатационном содержании объектов военной инфраструктуры // Вестник евразийской науки. 2022. Т. 14, № 4. С. 13.

Моделирование производственных программ интегрированных холдингов на двух уровнях / М. А. Горский, Д. А. Максимов Е. И., Смирнова, М. А. Халиков // Modern Economy Success. 2023. № 1. С. 213-220.

Попова Т. М., Рохманин Д. А. Применение математических методов решения задачи инвестиций // Far East Math - 2023: Материалы национальной научной конференции, Хабаровск, 04-09 декабря 2023 года. Хабаровск: Тихоокеанский государственный университет, 2024. С. 23-27.

Melnikov B., Melnikova E. On the Classical Version of the Branch and Bound Method // Компьютерные инструменты в образовании. 2022. No. 2. P. 41-58. DOI 10.32603/2071-2340-2022-2-41-58.

Воробьев М. С., Вахрушева Е. Н. Оптимизация выпуска продукции и прогнозирование объемов реализации продукции машиностроительного предприятия в условиях неопределенности спроса: обзор исследований // Информационные технологии в науке, промышленности и образовании. Молодежный научный форум: сборник трудов Всероссийской научно-технической конференции. Ижевск. 25-26 мая 2023 г. С. 169-174.

Тарасова С. А. Фактор ценности информации в адаптивном прогнозировании временных рядов // Информационные технологии. 2022. Т. 28, № 4. С. 219-224. DOI 10.17587/it.28.219-224.

Vintu D. GDP Modelling and Forecasting Using ARIMA. An Empirical Assessment for Innovative Economy Formation // European Journal of Economic Studies. 2021. Vol. 10, No. 1. P. 29-44. DOI 10.13187/es.2021.1.29.

Haoyu Liu, Zhibing Sun, Xi Liu Research on Financial Market Price Direction Based on ARIMA Model // Academic Journal of Business & Management. 2022. Vol. 4, no. 5. P. 57-60. DOI 10.25236/ajbm.2022.040512.

Husham A., Abdul Razak B. Forecasting of Shatt al-Arab water levels using autoregressive models and Seasonal Moving Average (SARIMA) // Al Kut Journal of Economics Administrative Sciences. 2023. Vol. 15, no. 47. P. 154-172. DOI 10.29124/kjeas.1547.8.

Junchao Zhang, Yisheng Huang, Chengbiao Huang, Wei Huang Research on ARIMA Based Quantit-ative Investment Model // Academic Journal of Business & Management. 2022. Vol. 4, no. 17. Pp. 54-62. DOI 10.25236/ajbm.2022.041708.

Петрусевич Д. А. Анализ математических моделей, используемых для прогнозирования эконометрических временных рядов // Российский технологический журнал. 2019. Т. 7, № 2 (28). С. 61-73. DOI 10.32362/2500-316X-2019-7-2-61-73.

Published

01.04.2025

How to Cite

Vakhrusheva Е. Н., Vologdin С. В., Vorobev М. С., Vakhrushev И. А., & Nabokov А. О. (2025). Production Plan Optimization Solution of a Machine-building Enterprise with Assisted by a Lending Institution. Intellekt. Sist. Proizv., 23(1), 46–53. https://doi.org/10.22213/2410-9304-2025-1-46-53

Issue

Section

Articles