Accounting Concept of Uncertainty at Estimate of Taxpayer Index Deviations from Standards Based on Probabilistic and Fractal Approach
Keywords:
neuron network model, tax control, probabilistic approach, fractal approach, ranking problemAbstract
A probabilistic criterion of ranking fiscal control objects by the numerical extent of distortion of accounting documentation is considered. The introduction in this criterion heuristic priori information using confidence intervals for the deviations between the estimated values obtained in the working neuron network model and the declared values of the simulated measure improves the reliability of ranking procedures. This idea is based on a system-wide asymmetry law, as well as system-wide patterns of incomplete suppression of the structured information system dysfunctions.References
Прангишвили И. И. Системный анализ и общесистемные закономерности. - М. : СИНТЕГ, 2000. - 525 с.
Горбатков С. А., Полупанов Д. В. Методы нейроматематики в налоговом контроле. - Уфа : РИЦ БашГУ, 2008. - 136 с.
Бирюков А. Н. О выборе числовых мер оценки погрешности данных и ошибок приближения восстанавливаемых функций в алгоритмах регуляризации нейросетевых моделей налогового контроля // Экономика и управление. Российский научный журнал. - 2010. - № 6. - С. 83-88.
Downloads
Published
15.03.2011
How to Cite
Biryukov А. Н. (2011). Accounting Concept of Uncertainty at Estimate of Taxpayer Index Deviations from Standards Based on Probabilistic and Fractal Approach. Vestnik IzhGTU Imeni M.T. Kalashnikova, (1), 71–74. Retrieved from https://izdat.istu.ru/index.php/vestnik/article/view/2851
Issue
Section
Articles