Formation of Vector Potential of Controlled Lagrangian of Dynamical System
Keywords:
dynamics of controlled system, formation of potential of Lagrangian, vector potentialAbstract
A method of controlled Lagrangian, based on the formation of the potential component required for the formation of the Lagrangian dynamics of the controlled system is considered in the paper. A distinguishing feature of the paper is the account of the vector potential in the formation of the Lagrangian function.References
Astrom K. J., Murray R. M. Feedback Systems: An Introduction for Scientists and Engineers. - Princeton University Press, 2008. - 396 p.
The equivalence of controlled Lagrangian and controlled Hamiltonian systems for simple mechanical systems / A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden, C. A. Woolsey // ESAIM: Control, Optimisation, and Calculus of Variations. - 2003. - Vol. 8. - P. 393-422.
Bloch A. M., Leonard N. E., Marsden J. E. Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem // IEEE Transactions on Automatic Control. - 2000. - Vol. 45. - P. 2253-2270.
Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping and tracking / A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden // IEEE Transactions on Automatic Control. - 2001. - Vol. 46. - P. 1556-1571.
Kirillov O. N., Verhulst F. Sensitivity analysis of dissipative reversible and hamiltonian systems: a survey // Proceedings of the ASME International Mechanical Engineering Congress and Exposition IMECE2009 (November 13-19, 2009). - 16 p.
Van der Schaft A. J. Stabilization of hamiltonian systems // Nonlinear analysis. Theory, Methods & Applications. - 1986. - Vol. 10. - No. 10. - P. 1031-1035.
Василенко Д. Н., Смирнов Ю. В., Чуканов С. Н. Диссипативная гамильтонова реализация для траекторного управления сложной динамической системой // Авиакосмическое приборостроение. - 2004. - № 7. - С. 21-27.
Нартов Б. К., Чуканов С. Н. Модели траекторного управления. - Омск : Изд-во ОмГУ, 2001. - 100 с.
Меркин Д. Р. Введение в теорию устойчивости движения. - М. : Наука, 1987. - 309 с.
Гантмахер Ф. Р. Теория матриц. - М. : Наука, 1988. - 552 с.
Голдстейн Г. Классическая механика. - М. : Наука, 1975. - 416 с.
Baez J. Lectures on Classical Mechanics. - University of California, 2005. - 76 p.
Krechetnikov R., Marsden J. E. Dissipation-induced instabilities in finite dimensions // Reviews of modern physics. - April-June 2007.- Vol. 79. - P. 519-553.
Gajic Z., Qureshi M. Lyapunov Matrix Equation in System Stability and Control. - Academic press, inc., 1995. - 255 p.
Kwon C., Ao P., Thouless D. J. Structure of stochastic dynamics near fixed points // Proc. Natl. Acad. Sci. USA 102, 2005. - P. 13029-13033.