Formation of Vector Potential of Controlled Lagrangian of Dynamical System

Authors

  • S. N. Chukanov Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Omsk Branch
  • I. A. Polonsky Siberian Automobile and Highway Academy, Omsk

Keywords:

dynamics of controlled system, formation of potential of Lagrangian, vector potential

Abstract

A method of controlled Lagrangian, based on the formation of the potential component required for the formation of the Lagrangian dynamics of the controlled system is considered in the paper. A distinguishing feature of the paper is the account of the vector potential in the formation of the Lagrangian function.

Author Biographies

S. N. Chukanov, Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Omsk Branch

DSc in Engineering, Professor

I. A. Polonsky, Siberian Automobile and Highway Academy, Omsk

Post-graduate

References

Astrom K. J., Murray R. M. Feedback Systems: An Introduction for Scientists and Engineers. - Princeton University Press, 2008. - 396 p.

The equivalence of controlled Lagrangian and controlled Hamiltonian systems for simple mechanical systems / A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden, C. A. Woolsey // ESAIM: Control, Optimisation, and Calculus of Variations. - 2003. - Vol. 8. - P. 393-422.

Bloch A. M., Leonard N. E., Marsden J. E. Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem // IEEE Transactions on Automatic Control. - 2000. - Vol. 45. - P. 2253-2270.

Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping and tracking / A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden // IEEE Transactions on Automatic Control. - 2001. - Vol. 46. - P. 1556-1571.

Kirillov O. N., Verhulst F. Sensitivity analysis of dissipative reversible and hamiltonian systems: a survey // Proceedings of the ASME International Mechanical Engineering Congress and Exposition IMECE2009 (November 13-19, 2009). - 16 p.

Van der Schaft A. J. Stabilization of hamiltonian systems // Nonlinear analysis. Theory, Methods & Applications. - 1986. - Vol. 10. - No. 10. - P. 1031-1035.

Василенко Д. Н., Смирнов Ю. В., Чуканов С. Н. Диссипативная гамильтонова реализация для траекторного управления сложной динамической системой // Авиакосмическое приборостроение. - 2004. - № 7. - С. 21-27.

Нартов Б. К., Чуканов С. Н. Модели траекторного управления. - Омск : Изд-во ОмГУ, 2001. - 100 с.

Меркин Д. Р. Введение в теорию устойчивости движения. - М. : Наука, 1987. - 309 с.

Гантмахер Ф. Р. Теория матриц. - М. : Наука, 1988. - 552 с.

Голдстейн Г. Классическая механика. - М. : Наука, 1975. - 416 с.

Baez J. Lectures on Classical Mechanics. - University of California, 2005. - 76 p.

Krechetnikov R., Marsden J. E. Dissipation-induced instabilities in finite dimensions // Reviews of modern physics. - April-June 2007.- Vol. 79. - P. 519-553.

Gajic Z., Qureshi M. Lyapunov Matrix Equation in System Stability and Control. - Academic press, inc., 1995. - 255 p.

Kwon C., Ao P., Thouless D. J. Structure of stochastic dynamics near fixed points // Proc. Natl. Acad. Sci. USA 102, 2005. - P. 13029-13033.

Published

15.06.2014

How to Cite

Chukanov С. Н., & Polonsky И. А. (2014). Formation of Vector Potential of Controlled Lagrangian of Dynamical System. Vestnik IzhGTU Imeni M.T. Kalashnikova, (2), 118–122. Retrieved from https://izdat.istu.ru/index.php/vestnik/article/view/2924

Issue

Section

Articles