Modeling and Predictive Control of Nonlinear Coupled and Underactuated Dynamics of a Hexacopter

Authors

  • N. I. Ibrahim

DOI:

https://doi.org/10.22213/2413-1172-2016-4-35-38

Keywords:

UAV, hexacopter, Kalman filter, nonlinear, coupled

Abstract

This paper considers the application of Kalman Filtering (KF) for Unmanned Aerial Vehicle (UAV) identification. A 3 Degree-Of-Freedom (DOF), nonlinear, coupled, and underactuated dynamics were considered for formulating the mathematical model to be used in numerical simulation. This work presents a simulation study that investigates unknown dynamics model parameters estimation of a hexacopter UAV under the presence of noisy feedback signals. Subspace identification method via principle component analysis was used to identify a precise nonlinear model based on Kalman filter to estimate and predict the hexacopter’s altitude. The results are compared with those obtained without using the predictive technique.

References

Grzonka S., Grisetti G., Burgard W. Towards a navigation system for autonomous indoor flying // Robotics and Automation, 2009. ICRA'09. IEEE International Conference on 2009 May 12. - Pp. 2878-2883.

Baranek R., Solc F. Hexacopter Pitch Estimator for a Pitch Stabilizer // IFAC Proceedings Volumes. 2013 Dec 31; 46(28). - Pp. 326-329.

Attitude Estimation of the Multi-rotor UAV Based on Simplified Adaptive Kalman Filter Algorithm / X. Zhang, Y. Bai, Z. Xu, R. Wang // Proceedings of the 2015 Chinese Intelligent Automation Conference, Springer Berlin Heidelberg, 2015. - Pp. 219-227.

Hajiyev C., Soken H. E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor / actuator faults // Aerospace Science and Technology. 2013 Jul 31; 28(1). - Pp. 376-383.

Mokhtari A., Benallegue A., Belaidi A. Polynomial linear quadratic gaussian and sliding mode observer for a quadrotor unmanned aerial vehicle // Journal of Robotics and Mechatronics. - 2005. - 17(4). - P. 483.

Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle / A. Mokhtari, N. K. M’Sirdi, K. Meghriche, A. Belaidi // Advanced Robotics. - 2006 Jan 1; 20(1). - Pp. 71-91.

Abas N., Legowo A., Akmeliawati R. Parameter identification of an autonomous quadrotor // Mechatronics (ICOM), 2011 4th International Conference On 2011 May 17. - Pp. 1-8.

Wang J., Qin S. J. A new deterministic-stochastic subspace identification method using principal component analysis // Automatica, submitted for publication. - 2004.

Ibrahim N. I., Oumran B. A Coupled and Underactuated Dynamic Model of Microcopter Using LabVIEW // IV Всерос. науч.-техн. конф. аспирантов, магистрантов и молодых ученых с междунар. участием (Ижевск 20-21 апреля 2016). - С. 981-990.

Ibrahim N. I. Attitude and Altitude Stabilization of Microcopter using PID Controllers with Disturbances in LabVIEW // IV Всерос. науч.-техн. конф. аспирантов, магистрантов и молодых ученых с междунар. участием (Ижевск 20-21 апреля 2016). - С. 989-996.

Zhong-ke S. On-line state estimation and parameter identification for flight // Decision and Control, 1990. Proceedings of the 29th IEEE Conference on 1990 Dec 5. - Pp. 1559-1560.

Chamberlain C. H. System Identification, State Estimation, and Control of Unmanned Aerial Robots // All Theses and Dissertations. - 2011. - Paper 2605. - URL: http://scholarsarchive.byu.edu/etd/2605

Sahawneh L. R. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems // All Theses and Dissertations. - 2016. - Paper 5840. - URL: http://scholarsarchive.byu.edu/etd/5840

Van O. P., De Moor B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems // Automatica. - 1994 Jan 31; 30(1). - Pp. 75-93.

Published

24.05.2017

How to Cite

Ibrahim И. Н. (2017). Modeling and Predictive Control of Nonlinear Coupled and Underactuated Dynamics of a Hexacopter. Vestnik IzhGTU Imeni M.T. Kalashnikova, 19(4), 35–38. https://doi.org/10.22213/2413-1172-2016-4-35-38

Issue

Section

Mechanical engineering