Theoretical and Experimental Research of Spherical Roller Transmissions
DOI:
https://doi.org/10.22213/2413-1172-2017-1-23-27Keywords:
transmission, gearbox, rolling body, cam, efficiencyAbstract
Mechanical transmissions with intermediate rolling bodies are currently being used to solve specific engineering tasks. They have a low material consumption and high load carrying capacity as the power transmission is carried out in several parallel flows, equal to the number of rolling elements. The disadvantages of many design schemes that prevent widespread use in the industry include low efficiency and poor reliability. The paper deals with the analysis and design of mechanical transmissions with intermediate rolling bodies having the trajectories of centers of mass situated on a spherical surface. Rollers interact with spherical cams, forming spatial closed periodic treadmills. The advantages are small axial and radial dimensions, the possibility of combining the gear mechanism assembly and the angular coupling in one layout. Designs of spherical roller transmissions are considered, a comparative analysis of two- and three-link mechanisms is performed, the results of the power analysis are presented; and the theoretical assessment of power losses is performed. The results of experimental studies of efficiency and noise characteristics for the designed speed gearboxes are given. The conclusion is grounded for the competitiveness of spherical roller transmissions as the general engineering mechanical transmission in the range of gear ratios 3 ... 15, and shaft rotation speed of not more than 3000 min-1.References
An I-Kan, Ilin A. S., Lazurkevich A. V. Aspects of geometric calculation of the planetary gear train with intermediate rollers. Part 1 [Electronic resource] // IOP Conference Series: Materials Science and Engineering. - 2016. - Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015). - 5 p. - URL: http://iopscience.iop.org/ article/10.1088/1757899X/124/1/012003/pdf (дата обращения: 16.12.2016.).
Самсонович С. Л., Константинов С. А., Степанов В. С. Шариковолновая передача. Основы расчета // Авиакосмическое приборостроение. - 2005. - № 5. - С. 53-59.
Игнатищев Р. М. Синусошариковые редукторы. - Минск : Выш. шк., 1983. - 107 с. : ил.
Porsche F., Rabe K. Articulated differential gear, particularly for motor vehicles: pat. 1946358 USA, Cl. 74-7. - Apl. № 664573; fil. 05.04.33 (fil. in Germany 08.04.32); pat. 06.02.34. - 3 p.
Фитцова Е. С. Силовой анализ сферических передач с промежуточными телами качения // Вестник Белорусско-Российского университета. - 2014. - № 4. - С. 92-99.
Становской В. В., Ремнева Т. А., Казакявичус С. М. Передачи со свободными телами качения. Обзор патентной литературы // Прогрессивные зубчатые передачи : сб. науч. тр. - Новоуральск : Изд-во НГТИ, 2003. - С. 61-94.
Lustenkov M. E. Spherical Planetary Ball Transmissions: Geometrical Synthesis // Open Access Library Journal. - 2014. - Vol. 1. - No 3. - Pp. 1-8. - URL: http://file.scirp.org/pdf/ OALibJ_2016022616105810.pdf (дата обращения: 16.12.2016).
Бостан И. А. Прецессионные передачи с многопарным зацеплением. - Кишинев : Штиинца, 1991. - 386 с.
Маргулис М. В., Шайда А. С. Методика определения основных параметров силовой волновой передачи с промежуточными телами качения // Вiснiк Прiазовьского державного технiчного унiверсiтету. - 2008. - № 18. - С. 125-128.
Черемнов А. В., Алиев Ф. Р., Ан И-Кан. Определение усилия зацепления конической передачи с промежуточными телами качения // Высокие технологии в современной науке и технике : сб. науч. тр. II Всерос. науч.-техн. конф. молодых ученых, аспирантов и студентов с междунар. участием. - Томск, ТПУ. - 2013. - Т. 2. - C. 323-327.