Perspective Telecommunication Devices for Operating under Harsh Conditions

Authors

  • A. I. Nistyuk Kalashnikov ISTU
  • N. A. Derisheva Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2413-1172-2018-1-71-73

Keywords:

telecommunication devices, harsh operating conditions, mechanical signal modulation elements, micro angle reflectors

Abstract

The development of the regions of space in which conventional means of communication and telecommunication are unserviceable, is an urgent task. This paper is devoted to the development of telecommunication devices capable of operating in harsh environments. Harsh environments include high temperature, radiation, humidity and vibration. Components for the collection, processing, storage and transmission of information using high-temperature materials and properties of mechanical movement are developed nowadays. The authors offer the device, whose components are based on silicon and ceramics, and the transfer of information is carried out by reflection of the incident signal mechanically using micro angle modulating reflectors. The device collects autonomously and it is ready to transfer information during a communication session. During the session, the device emits an electromagnetic signal of constant frequency. The signal reaching the angle reflector on the second apparatus is modulated by mirrors of the reflector and returned back to the unit where information is processed by known methods. The frequencies of oscillation are sufficient for transmission of dynamic images. The use of several hundred micro angle reflectors requires energy much less than for one device similar by its reflectivity. The main advantages of the proposed devices and communication system are low power consumption and high reliability of information transmission in harsh environments.

Author Biographies

A. I. Nistyuk, Kalashnikov ISTU

DSc in Engineering, Professor

N. A. Derisheva, Kalashnikov ISTU

Master’s Degree Student

References

Тюлевин С. В. Анализ отказов элементов бортовых радиоэлектронных средств. URL: http://www.sworld.com.ua/simpoz8/80.pdf (дата обращения: 26.10.2017).

Shalygin E. Study of the Venus surface and lower atmosphere using VMC images. Berlin, 2013. P. 9.

Технологии поверхностного монтажа. URL: http://smt.miem.edu.ru (дата обращения: 26.10.2017).

Лакшминарайянан В. Методы повышения надежности электронных систем. URL: http://www.chipnews.ru/html.cgi/arhiv/00_08/stat_46.htm (дата обращения: 26.10.2017).

Карбидокремниевые наномеханические переключатели долговечны. URL: http://www.tdmegalit.ru/ news/world/23551/ (дата обращения: 26.10.2017)

Новости нанотехнологий. URL: http://www.microsystems.ru/files/publ/838.htm (дата обращения: 26.10.2017)

Nistyuk A. I., Danilov M. V., Sivtsev N. S., Kugultinov S. D. (2016). Method for direct identification of optimum modal values of dynamical systems. Vibroengineering PROCEDIA, vol. 8, pp. 256-263.

Нистюк А. И. Синтез лентопротяжных механизмов по частотным спектрам как диссипативных колебательных систем : дис. … канд. техн. наук. Ижевск : ИжГТУ, 1983. 225 с.

Nistyuk A. I., Lyalin V. E., Danilov M. V., Mikhailov Y. O. (2016). Diacoptical analysis algorithms of topological site models of information backup and storage carrier. Vibroengineering PROCEDIA, vol. 8, pp. 470-477.

Бабинцев Е. С., Копысов А. Н. Расчет распознаваемости многочастотного широкополосного сигнала // Приборостроение в XXI веке. Интеграция науки, образования производства : Труды III Научно-практической конференции. Ижевск : Изд-во ИжГТУ, 2007. С. 360-364.

Published

02.04.2018

How to Cite

Nistyuk А. И., & Derisheva Н. А. (2018). Perspective Telecommunication Devices for Operating under Harsh Conditions. Vestnik IzhGTU Imeni M.T. Kalashnikova, 21(1), 71–73. https://doi.org/10.22213/2413-1172-2018-1-71-73

Issue

Section

Articles