Test Bed for Experimental Studies of Communication Quality in Mobile Self-Organizing Networks
DOI:
https://doi.org/10.22213/2413-1172-2018-1-89-93Keywords:
ad hoc networks, network coding, quality of service, test bed, unmanned aerial vehicleAbstract
The paper describes the testbed that allows for evaluation of the effectiveness of the new encoding algorithms in Flying Ad Hoc Networks (FANETs), including the method of network coding. The testbed consists of a ground station (laptop), the flying robot (unmanned aerial camera, UAV) and several microcomputers Raspberry Pi 3. Using the testbed the communication range between the ground station and the flying robot was estimated, also the approach to the efficiency analysis of algorithm network coding in ad-hoc network on the basis of the Raspberry Pi 3 was proposed. Two scenarios were investigated. In the first scenario, a flying robot sent video from an on board camera to a ground station. After gathering all the data the quality of service (QoS) was analyzed and the Packet Delivery Ratio (PDR) was calculated using the program Wireshark network traffic analyzer. According to the results of the measurements the maximum communication range between the ground station and the flying robot with the standard 802.11 n (Wi-Fi) were found. In the second scenario a self-organizing network of three microcomputers Raspberry Pi 3 was created. To route data the B.A.T.M.A.N. protocol was used on the basis of which one implementation of the method of network coding can be analyzed.References
Bekmezci I., Sahingoz O. K., Temel S. Flying ad-hoc networks (FANETs): A survey // Ad Hoc Networks. 2013. Т. 11, № 3. С. 1254-1270.
Bok P. B., Tuchelmann Y. Context-aware qos control for wireless mesh networks of uavs // Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on. IEEE, 2011. С. 1-6.
Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs / Beard R. W. [et al.] // Proceedings of the IEEE. 2006. Т. 94, №. 7. С. 1306-1324.
Robinson W. H., Lauf A. P. Resilient and efficient MANET aerial communications for search and rescue applications // Computing, Networking and Communications (ICNC), 2013. International Conference on. IEEE, 2013. С. 845-849.
Speed-aware routing for UAV ad-hoc networks / Rosati S. [et al.] // Globecom Workshops (GC Wkshps), 2013. IEEE, 2013. С. 1367-1373.
UAV-aided cross-layer routing for MANETs / Guo Y. [et al.] // Wireless Communications and Networking Conference (WCNC), 2012 IEEE. IEEE, 2012. С. 2928-2933.
Improving routing in networks of Unmanned Aerial Vehicles: Reactive-Greedy-Reactive / Li Y. [et al.] // Wireless Communications and Mobile Computing. 2012. Т. 12, №. 18. С. 1608-1619.
A comparative analysis of beaconless opportunistic routing protocols for video dissemination over flying ad-hoc networks / Rosário D. [et al.] // International Conference on Next Generation Wired/Wireless Networking. Springer, Cham, 2014. С. 253-265.
Software-defined architecture for flying ubiquitous sensor networking / Kirichek R. [et al.] // Advanced Communication Technology (ICACT), 2017? 19th International Conference on. IEEE, 2017. С. 158-162.
Кучерявый А. Е., Владыко А. Г., Киричек Р. В. Теоретические и практические направления исследований в области летающих сенсорных сетей // Электросвязь. 2015. № 7. С. 9-11.
Vasiliev D. S., Meitis D. S., Abilov A. Simulation-based comparison of AODV, OLSR and HWMP protocols for flying Ad Hoc networks // International Conference on Next Generation Wired/Wireless Networking. Springer, Cham, 2014. С. 245-252.
Meitis D., Vasiliev D., Abilov A. Simulation of MANETs routing protocols for UAVs // Fourth Forum of Young Researchers : Framework of International Forum “Education Quality-2014”. Izhevsk: 2014. С. 358-363.
Кайсина И. А., Васильев Д. С., Абилов А. В. Анализ эффективности протоколов маршрутизации OLSR и AODV в летающей сети FANET // Вестник ИжГТУ имени М. Т. Калашникова. 2017. Т. 20, №. 1. С. 87-90.
Oh S. Y., Gerla M., Tiwari A. Robust manet routing using adaptive path redundancy and coding // Communication Systems and Networks and Workshops, 2009. Comsnets, 2009. First International. IEEE, 2009. С. 1-10.
Oh S. Y., Shen B., Gerla M. Network coding over a manet proactive link state routing protocol and tdma scheduling // Military communications conference, 2012-MILCOM 2012. IEEE, 2012. С. 1-6.
Yang S., Yeo C. K., Lee B. S. Toward reliable data delivery for highly dynamic mobile ad hoc networks // IEEE transactions on mobile computing. 2012. Т. 11, №. 1. С. 111-124.
Marchenko N., Bettstetter C. Cooperative ARQ with relay selection: An analytical framework using semi-Markov processes // IEEE transactions on vehicular technology. 2014. Т. 63, №. 1. С. 178-190.
XORs in the air. Practical wireless network coding / Katti S. [et al.] // ACM SIGCOMM computer communication review. ACM, 2006. Т. 36, №. 4. С. 243-254.
Кайсина И. А., Васильев Д. С., Абилов А. В. Модель в среде ns-3 для передачи видеоданных в сети БПЛА // Материалы XXIII Республ. выставки-сессии студенческих инновационных проектов / ИжГТУ имени М. Т. Калашникова, 2017. С. 69-74.
Vasiliev D. S., Kaysina I. A., Abilov A. Performance Evaluation of COPE-like Network Coding in Flying Ad Hoc Networks: Simulation-Based Study // Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer, Cham, 2017. С. 577-586.