On the Issue of the Possibility of Expanding the Regimes of Combat Use of Aircraft Artillery Weapons
DOI:
https://doi.org/10.22213/2413-1172-2018-2-37-42Keywords:
aviation artillery weapons, thermal field, finite element method, the probability of failure, diffusionAbstract
Aviation artillery weapons can be attributed to those systems with the perspectives of their being preserved for the entire period of the army’s existence with conventional weapons, so the question of finding the most effective ways of carrying out its modernization remains actual today. Incorrect organization of regimes for the combat use of aircraft artillery weapons can lead to non-fulfillment of the flight task and even the loss of its own aircraft. Assessment of the temperature field of aircraft artillery weapons, in which, after the shooting ceases, the next ammunition is sent to the trunk channel, is an important component in assessing its qualitative and safe functioning. The paper deals with the model of the thermal state of the “weapon - cartridge” system, which is a composite construction of a complex shape, when shooting an increased number of shots in the queue, bursts of shots, changing the time intervals between the bursts of shots, the choice of the finite difference method for constructing the mathematical model of heating the “weapon - cartridge”. The influence of interruptions between the bursts of shots during the time of reaching the permissible temperatures of the operation of the explosive of a unitary cartridge, affecting the safe use of aircraft artillery weapons, is estimated. The influence of the flight altitude on the possibility of expanding the ranges of combat use of aircraft artillery weapons is determined. The analysis of the effect of the increase in ammunition in the queue and the number of firing queues on the probability of target damage is presented. Using the simulation method, the influence of a longer-length queue on the scattering of impact ammunition during firing at an air target is determined.References
К вопросу о расчете передачи тепла от разностенной по длине сечения трубы помещенному в нее телу, критичному к температуре / Р. А. Даниленко, А. В. Подкопаев, А. Н. Дёмин, Г. Г. Косарев // Успехи современной науки. 2017. № 5. С. 96-100.
Сапожников С. В., Китанин Л. В. Техническая термодинамика и теплопередача. СПб. : Изд-во СПбГТУ, 2003. 319 с.
Румянцев В. Д. Теория тепло- и массообмена. Днепропетровск : Пороги, 2006. 532 с.
Карташов Э. М. Аналитические методы в теории теплопроводности твердых тел. М. : Высш. шк., 2001. 550 с.
Макарьянц Г. М., Прокофьев А. Б. Основы метода конечных элементов. Самара : Изд-во СГАУ, 2013. 79 с.
Elishakoff I., Ren Y. (2003). Finite Element Methods for Structures with Large Stochastic Variations. Oxford Univtrsity Press.
Бате К. Ю. Методы конечных элементов. М. : Физматлит, 2010. 1024 с.
Даниленко Р. А., Подкопаев А. В., Малышев В. А. Анализ некоторых способов повышения эффективности применения авиационного артиллерийского оружия : сборник научных статей по материалам IV Всерос. науч.-практ. конф. «Академические Жуковские чтения». Воронеж : Изд-во ВУНЦ ВВС «ВВА им. проф. Н. Е. Жуковского и Ю. А. Гагарина», 2016. С 23-27.
Шипунов А. Г., Швыкин Ю. С. Живучесть стволов скорострельных пушек и способы ее обеспечения. М. : Машиностроение, 1977. 167 c.
Авиационные боеприпасы / Ф. П. Миропольский, Е. В. Пырьев, В. В. Головенкин, С. В. Хрулин. М. : Изд-во ВУНЦ ВВС «ВВА им. проф. Н. Е. Жуковского и Ю. А. Гагарина», 2010. 406 с.