Modeling the Trajectory of Aircraft Unguided Weapons
DOI:
https://doi.org/10.22213/2413-1172-2018-3-179-184Keywords:
ballistic model of movement, bomb, weight of aviation means of destruction, gust of windAbstract
Efficiency of application of aviation destruction means directly depends on the accuracy of solving the problem of aiming, which includes the definition of the parameters of targeting and implementation on their basis of such control of the aircraft and weapons in order to ensure hitting the target. The paper deals with the influence of the initial conditions of bombing on the solution of the aiming problem. The expansion of the model of motion of an aircraft means of destruction in ballistic algorithms implemented in sighting systems of aircraft is proposed. The expansion of the model of motion of the aircraft means of destruction is performed by taking into account the deviation of the mass of the aircraft bomb from the nominal value associated with the year of manufacture of the aircraft means of destruction, as well as taking into account random wind gusts on the trajectory by modeling them by drawing a random event with a given distribution law. The simulation was carried out in the system of computer algebra MahtCad 15 for two cases: the first case was the account of mass-dimensional characteristics; the second - random gusts of wind on the trajectory. Analysis of the results of the simulation for the first case shows that the error in determining the point of incidence of the aircraft means of destruction increases significantly with the deviation of the mass of the air bomb from the nominal value within the specified limits and at specified intervals. In the second case, the effect of wind gusts on the trajectories with random increasing stochastic characteristics has a significant effect on the increase in the mean square deviation of the scattering of the weapon. Thus, taking into account the correct initial conditions in the existing ballistic algorithms will improve the accuracy and efficiency of air strikes.References
Ганулич А. К. Авиационные прицельные системы, их исследование и испытания. М. : ВВИА им. проф. Н. Е. Жуковского, 1984. 209 с.
Краснов А. М. Авиационные прицельно-навигационные системы. М. : ВВИА им. проф. Н. Е. Жуковского, 2006. 623 с.
Мхитарян А. М. Аэродинамика. М. : ЭКОЛИТ, 2012. 448 с.
Постников А. Г. Внешняя баллистика авиационных неуправляемых снарядов. М. : ВВИА им. проф. Н. Е. Жуковского, 2003. 396 с.
Дмитриевский А. А., Лысенко Л. Н. Внешняя баллистика. М. : Машиностроение, 2005. 608 с.
Там же.
Там же.
Беневольский С. В., Колесов Ю. Б. Объектно-ориентированное моделирование в задачах внешней баллистики. СПб. : Политехнический университет, 2009. 127 с.
Монсик В. Б. Статистические основы авиационного вооружения. М. : ВВИА им. проф. Н. Е. Жуковского, 2003. 484 с.
Должиков В. И., Николаев А. В. Определение аэродинамических характеристик вращающегося летательного аппарата при неуправляемом полете с помощью систем инженерного анализа // Вестник Московского авиационного института. 2015. Т. 22, № 3. С. 55-60.
Aly S. Attallah. Modelling and Simulation for free fall bomb dynamics in windy environment. Proc. 16-th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, pp. 11-19. At Cairo, Egypt, 2015.
Николаев А. В., Пашко А. Д. Баллистическое обеспечение метания активных элементов защиты при действии малоразмерных высокоскоростных объектов // Вестник Московского авиационного института. 2016. Т. 23, № 3. С. 67-73.