Methods and Devices of Control of Phase Composition, Electrical and Magnetic Properties of Chromium-Nickel Steels

Authors

  • M. K. Korkh M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
  • M. B. Rigmant M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
  • Y. V. Korkh M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
  • A. P. Nichipuruk M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

DOI:

https://doi.org/10.22213/2413-1172-2018-4-4-12

Keywords:

austenite, ferrite, strain-induced martensite, phase analysis, scanning probe microscopy, specific electrical resistance, magnetic permeability

Abstract

This paper is devoted to the problems of phase analysis and control of the content of various phases in corrosion-resistant chromium-nickel steels of austenitic and austenitic-ferritic classes widely used in various branches of modern industry and machine building. The first part of the paper presents the results of studies of the relationship between the electrical properties and the phase composition of samples of steels being studied, both in the initial state and after their plastic deformation. Using the scanning probe microscope by means of the atomic-force and electro-power (Kelvin probe method) microscopy, images of the surface of the samples were obtained. Analysis of the image data makes it possible to determine the changes in the phase composition of austenitic and austenitic-ferritic steels after plastic deformation. With the help of scanning probe microscope using atomic-force and electro-power (Kelvin probe method) microscopy, images of the surface of the samples were obtained. Analysis of the image data makes it possible to determine the changes in the phase composition of austenitic and austenitic-ferritic steels after plastic deformation. It has also been found that the decay of the austenite phase due to deformation effects and the subsequent formation of a strain-induced martensite leads to a change in the electrical resistivity of the samples, the magnitude of which can be judged on the amount of a strain-induced martensite formed. In the second part of the paper new instrument developments are developed for express (including non-destructive) control of electrical and magnetic properties of austenitic steels. Timely and reliable control of these properties is necessary for qualitative and quantitative assessment of the phase composition of products both after their manufacture and during operation.

Author Biographies

M. K. Korkh, M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

PhD in Engineering

M. B. Rigmant, M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

PhD (Physics and Mathematics)

Y. V. Korkh, M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

PhD in Engineering

A. P. Nichipuruk, M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

DSc in Engineering

References

Филиппов М. А., Литвинов В. С., Немировский Ю. Р. Стали с метастабильным аустенитом. М. : Металлургия, 1988. 255 с.

Курдюмов В. Г., Утевский Л. М., Энтин Р. И. Превращения в железе и стали. М. : Наука, 1977. 236 с.

Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В. В. Сагарадзе, Ю. И. Филиппов, А. Ф. Матвиенко, Б. И. Мирошниченко, В. Е. Лоскутов, В. А. Канайкин. Екатеринбург : УрО РАН, 2004. 228 с.

Fahr D. Stress-and strain-induced formation of martensite and effects on strength and ductility of metastable austenitic stainless steels. Metallurgical Transactions, 1971, vol. 2, no 7, pp. 1883-1892.

Апаев Б. А. Фазовый магнитный анализ сплавов. М. : Металлургия, 1976. 281 с.

Меринов П. Е., Мазепа А. Г. Определение мартенсита деформации в сталях аустенитного класса магнитным методом // Заводская лаборатория, 1997. № 3. С. 47-49.

Меринов П. Е. Магнитная ферритометрия // Неразрушающие методы контроля. Спецификатор различий в национальных стандартах различных стран. Серия: Международная инженерная энциклопедия. 1995. Т. 3. С. 68-128.

Щербинин В. Е., Горкунов Э. С. Магнитный контроль качества металлов. Екатеринбург : УрО РАН, 1996. 264 с.

Korkh M. K., Korkh Yu. V., Rigmant M. B., Kazantseva N. V., Vinogradova N. I. Using Kelvin probe force microscopy for controlling the phase composition of austenite-martensite chromium-nickel steel. Russian journal of nondestructive testing, 2016, vol. 52, pp. 664-672.

Ogneva M. S., Rigmant M. B., Kazantseva N. V., Davydov D. I., Korkh M. K. Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium-nickel steel. Russian journal of nondestructive testing, 2017, vol. 53, pp. 644-651.

Апаев Б. А. Фазовый магнитный анализ сплавов. М. : Металлургия, 1976. 281 с.

Гудремон Э. Специальные стали : в 2 т. М. : Металлургиздат, 1966. Т. 2.

Миронов В. Л. Основы сканирующей зондовой микроскопии : учеб. пособие для студентов старших курсов высших учебных заведений / Российская академия наук; Институт физики микроструктур. Н. Новгород, 2004. 110 с.

Nonnenmacher M., O’Boyle M. P., Wickramasinghe H. K. [Kelvin probe force microscopy]. Applied Physics Letters, 1991, vol. 58, no. 25, pp. 2921-2923.

Melitz W., Shen J., Kummel A. C., Lee S. Kelvin probe force microscopy and its application. Surface Science Reports, 2011, vol. 66, pp. 1-27.

Femenia M., Canalias C., Pana J., Leygraf C. Scanning Kelvin Probe force microscopy and magnetic force microscopy for characterization of duplex stainless steels. Journal of the Electrochemical Society, 2003, vol. 150, no. 6, pp. B274-B281.

Schmutz P., Frankel G. S. [Characterization of AA2024 T3 by scanning Kelvin probe force microscopy]. Journal of the Electrochemical Society, 1998, vol. 145, no. 7, pp. 2285-2295.

Korkh M. K., Korkh Yu. V., Rigmant M. B., Kazantseva N. V., Vinogradova N. I. Using Kelvin probe force microscopy for controlling the phase composition of austenite-martensite chromium-nickel steel. Russian journal of nondestructive testing, 2016, vol. 52, pp. 664-672.

Ogneva M. S., Rigmant M. B., Kazantseva N. V., Davydov D. I., Korkh M. K. Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium-nickel steel. Russian journal of nondestructive testing, 2017, vol. 53, pp. 644-651.

Пат. RU U1 РФ, МПК G01N27/72, G01N27/87 № 179750. Устройство для локального контроля содержания ферромагнитных фаз в аустенитных сталях / М. Б. Ригмант, М. К. Корх, А. П. Ничипурук; патентообладатель: Федеральное государственное бюджетное учреждение науки «Институт физики металлов имени М. Н. Михеева» УрО РАН. Заявл. 20.12.2017; опубл. 23.05.2018, бюл. № 15.

Пат. RU U1 РФ, МПК G01N27/72, G01N27/87 № 179753. Прибор для локального измерения ферромагнитной фазы в аустенитных сталях / М. Б. Ригмант, М. К. Корх, А. П. Ничипурук; патентообладатель: Федеральное государственное бюджетное учреждение науки «Институт физики металлов имени М. Н. Михеева» УрО РАН. Заявл. 28.12.2017; опубл. 23.05.2018, бюл. № 15.

Published

25.02.2019

How to Cite

Korkh М. К., Rigmant М. Б., Korkh Ю. В., & Nichipuruk А. П. (2019). Methods and Devices of Control of Phase Composition, Electrical and Magnetic Properties of Chromium-Nickel Steels. Vestnik IzhGTU Imeni M.T. Kalashnikova, 21(4), 4–12. https://doi.org/10.22213/2413-1172-2018-4-4-12

Issue

Section

Articles