Identification of Dynamic Model of Safety Valve
DOI:
https://doi.org/10.22213/2413-1172-2018-4-13-21Keywords:
safety valve, gas-dynamic force, parametric identification, dynamic model, numerical methodsAbstract
A safety valve is among the devices being used to ensure the safety of pipelines and integrity of installations. To analyze stability of valves operation and to calculate oscillatory processes, the dynamic model is required, the parametric identification of which has been accomplished with the use of experimental data and multidimensional numerical simulation results. The task of valve dynamic model identification comprises determination of gas-dynamic force dependence on motion of the plate and performance characteristics (pressure, temperature) of the vessel in which pressure is being regulated. The task of safety valve dynamic model identification was formulated. The gas-dynamic force dependence on time and rise of the plate is found as the control function in the task of optimum control by two criteria: minimum deviation of calculated values from the experimental ones for pressure and plate displacement. The numerical method of optimum control is based upon reduction to the task of non-linear programming. To solve the set task of poly-criterial optimization, the hybrid genetic algorithm with material coding is used. The task of safety valve dynamic model identification is solved by means of three options of experimentation with 2J3 valve. Comparison of the calculated force difference from the measured one showed the opportunity to determine the gas-dynamic force value by the results of pressure measurement and plate rise at all the stages of the valve operation.References
Tobias Dannenmaier, Jürgen Schmidta, Jens Deneckea, Oliver Odenwaldb. European Program on Evaluation of Safety Valve Stability. Chemical Engineering Transactions, 2016, 48, 625-630.
B. J. Patil, V. B. Sondur. Dynamic Analysis of Hydraulic Pressure of Relief valve. International Journal of Latest Trends in Engineering and Technology (IJLTET), May 2013, vol. 2, iss. 3, pp. 11-17. ISSN: 2278-621X.
B. J. Patil, V. B. Sondur. Dynamic behaviour of hydraulic pressure relief valve. International Journal of Mechanical Engineering and Technology (IJMET), October 2014, vol. 5, iss. 10, pp. 129-137. ISSN 0976-6340.
A. J. Ortega, B. N. Azevedo, L. F. G. Pires, A. O. Nieckele, L. F. A. Azevedo. А numerical model about the dynamic behavior of a pressure relief valve. Proc. 12th Brazilian Congress of Thermal Engineering and Sciences (November 10-14, 2008), Belo Horizonte, MG.
Csaba Hős, Csaba Bazsó, Alan Champneys. Model reduction of a direct spring-loaded pressure relief valve with upstream pipe. IMA Journal of Applied Mathematics, 2015, vol. 80, pp. 1009-1024. Doi:10.1093.
Gábor Licskó, Alan Champneys, CsabaHős. Dynamical Analysis of a Hydraulic Pressure Relief Valve. Proc. of the World Congress on Engineering (July 1- 3, 2009, London), vol. II, U.K.
C. J. Hos, A. R. Champneys, K. Paulc, M. McNeelyc. Dynamic behavior of direct spring loaded pressure relief valves in gas service. Model development, measurements and instability mechanisms Journal of Loss Prevention in the Process Industries, 2014, vol. 31, рр. 70-81.
X. Song, L. Cui, M. Cao, W. Cao, Y. Park, W. M. Dempster. A CFD analysis of the dynamics of a direct-oprated safety relief valve mounted on a pressure vessel. Energy Conversion and Management, 2014, рp. 407-419.
Liu Yang, Zhoujie Wang, William Dempster, Xinhai Yu, Shan-Tung Tu. Experiments and transient simulation on spring-loaded pressure relief valve under high temperature and high pressure steam conditions. Journal of Loss Prevention in the Process Industries, 2017, vol. 45, рр.133-146.
Численное моделирование газодинамики предохранительного клапана / Т. Редер, В. А. Тененев, М. Р. Королева, О. В. Мищенкова, О. А. Воеводина // Интеллектуальные системы в производстве. 2017. Т. 15, № 4. С. 4-11.
Olivera Jovanović. Identification of dynamic system using neural network UNIVERSITY OF NIŠ. Facta universitatis, Series: Architecture and Civil Engineering, 1997, vol. 1, no. 4, pp. 525-532.
Tor A. Johansen, Member, IEEE, Robert Shorten, Member, IEEE, and Roderick Murray-Smith. On the Interpretation and Identification of Dynamic Takagi-Sugeno Fuzzy Models. Transactions on fuzzy systems, 2000, vol. 8, no. 3, pp. 297-313.
Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. М. : Наука, 1976. 400 c.
Редер Т., Тененев В. А., Паклина Н. В. Исследование влияния величины начального зазора на динамику открывания предохранительного клапана // Интеллектуальные системы в производстве. 2018. № 2. С. 28-40.
Chandrika P. Vyasarayani, Thomas Uchida, Ashwin Carvalho, John McPhee. Parameter identification in dynamic systems using the homotopy optimization approach. Multibody SystDyn, 2011, 26:411-424. Doi: 10.1007/s11044-011-9260-0.
Tenenev V. A., Yakimovich B. A. Practice of genetic Algorithms. Universitas - GYORNonprofitKft. 2012, p. 279.
Евтушенко Ю. Г. Методы решения экстремальных задач и их применение в системах оптимизации. М. : Наука, 1982. 432 c.
Редер Т., Тененев В. А., Паклина Н. В. Указ. соч.
Tenenev V. A., Yakimovich B. A. Op. cit.