Selection of Basic Function for Identification of Time Series Based on Associative Majority Approach
DOI:
https://doi.org/10.22213/2413-1172-2018-4-194-199Keywords:
basic dependencies, identification, time series, forecasting, dynamic processes, associative-majority approach, pattern recognitionAbstract
The paper proposes a model for choosing basic functions for automated identification of time series, an algorithm and software for identifying time series based on an associative majority approach, which allow to identify the type of basic dependencies of dynamic processes. The task of identifying the type of basic functions is solved using the classical theory of pattern recognition. Identification is performed by comparing the original image with the standards stored in a single image space. The image space is the area of device memory (associative memory) on which identification is performed. A feature of the proposed model is the efficiency of comparing the original images with the images of standards by using a single attribute space and the possibility of comparing all images in one measure. To increase the speed of identification in the algorithm for selecting basic functions, an associative majority approach to storing and searching identification data in electronic memory is also used. The proposed algorithm and software for selecting basic functions are universal, since they allow identifying the type of basic dependence in any dynamic process, regardless of the specifics of the subject area under study. Automated identification of the type of basic functions reduces the time to build predictive models and allows you to quickly predict further variants of the process flow.References
Афанасьев В. Н., Юзбашев М. М. Анализ временных рядов и прогнозирование : учебник. М. : Финансы и статистика; ИНФРА-М, 2010. 228 с. : ил.
Афанасьев В. Н., Лебедева Т. В.Моделирование и прогнозирование временных рядов: учеб.-метод. пособие для вузов. М.: Финансы и статистика, 2009. 292 с. : ил.
Подвальный Е. С. Модели индивидуального прогнозирования и классификации состояний в системах компьютерного мониторинга. Воронеж: Изд-во ВГТУ, 1998. 127 с.
Громова Н. М., Громова Н. И. Основы экономического прогнозирования. Старая Русса: Академия естествознания, 2006. 81 с.
Пат. 2430415 Российская Федерация, МПК G 06 K 9/00. Устройство для распознавания образов / Р. И. Хасанов, М. З. Масягутов, Т. З. Аралбаев; заявитель и патентообладатель Оренбургский государственный университет. № 2010116601/08; заявл. 26.04.2010, опубл. 27.09.2011, Бюл. № 27. 21 с. : ил.
Chevaleyre Y., Endriss U., Maudet N. Simple negotiation schemes for agents with simple preferences: sufficiency, necessity and maximality. Autonomous Agents and Multi. Agent Systems, 2010, no. 20, pp. 234-259.
Abdo H., Kaouk M., Flaus J.-M., Masse F. A safety/security risk analysis approach of Industrial Control Systems: A cyber bowtie - combining new version of attack tree with bowtie analysis. Computers & Security, 2018, vol. 72, pp. 175-195. DOI: 10.1016/ j.cose.2017.09.004.
Аралбаев Т. З., Абрамова Т. В. Исследование эффективности методов мониторинга сетевого трафика на основе последовательного и ассоциативно-последовательного принципов поиска актуальной информации // СТИН. 2017. № 11. С. 2-5.
Aralbaev T. Z., Abramova T. V. Network Traffic Monitoring on the Basis of Sequential and Associative-Sequential Search Principles. Russian Engineering Research, 2018, vol. 38, no. 5, pp. 381-383.
Аралбаев Т. З., Хакимова Э. Р., Гайфулина Д. А. Идентификация тренда временного ряда: прикладная программа / Мин-во образования и науки РФ ; Оренбургский гос. ун-т. Электрон. текстовые данные (1 файл: 3 Мб). Оренбург : ОГУ, 2016.