Development of Technology for Robotic Laser Welding of Thin-Walled Products from Heat-Resistant Alloys

Authors

  • S. E. Krylova <span lang="EN-US">Orenburg State University, Orenburg, Russia</span>
  • S. P. Oplesnin <span lang="EN-US">Orenburg State University, LLC “Technology”, Orenburg, Russia</span>
  • A. P. Fot Orenburg State University, Orenburg, Russia
  • A. U. Ibragimov Kalashnikov ISTU, Izhevsk, Russia
  • V. A. Zavyalov LLC “Technology”, Orenburg, Russia

DOI:

https://doi.org/10.22213/2413-1172-2020-2-46-53

Keywords:

laser welding, spatial welded joints, dendritic structure, heat-affected zone, temperature range of brittleness, crystallization (hot) cracks

Abstract

The results of testing the modes of robotic laser welding of spatial welded joints of thin-walled products from heat-resistant steels are considered. The relevance of using this method of obtaining one-piece joints for large-sized thin-walled structures of the aviation industry is substantiated. Technological difficulties and conditions for the modernization of a robotic laser complex based on a solid-state laser LS 2 for the implementation of technology for welding spatial elements from heat-resistant alloys are discussed. Based on structural and durometric studies, the advantages of contact laser welding without filler wire are confirmed. Optimized parameters of the laser robotic welding mode for the KhN50VMKTYUR alloy are indicated. The possibility of controlling the properties of the welded joint by increasing the input power of laser radiation in the range of 0.7-1.8 kW and welding speed in the range of 150-200 m/h is shown. Comparative studies of the influence of the parameters of various methods of industrial welding on the metallography of the weld and the technological strength of the welded joint are presented.

An analysis of the microstructure showed that the cast structure of the weld obtained by laser welding differs from the structure obtained by classical welding methods, the characteristic finely meshed dispersed structure of dendritic crystals and a much shorter thermal influence zone up to 2-2.2 mm. At the same time, the welded joint has a strength that is not inferior to the base metal, and ductility meets all operational requirements for the product. It was found that carbide and intermetallic inclusions of complex chemical composition are intensively released along the boundaries of the cellular-dendritic structure during cooling in the range of 650 ... 850 ° С, which forms the effect of hardening of the weld metal.

The resistance of welded joints against the formation of crystallization (hot) cracks is evaluated. It is shown that laser welding of steels with high cooling rates of the weld metal in the temperature range of brittleness has a favorable effect on the resistance of welded joints against the formation of crystallization hot cracks. This fact helps to minimize the release of undesirable γ′-phase in the weld metal during cooling.

References

Терри Вандер Верт. Перспективы лазерной сварки в российской промышленности – обеспечение наиболее эффективного производственного процесса // Комплект: ИТО. Инструмент. Технология. Оборудование. 2013. № 3. С. 50–53.

Исследование кристаллографической текстуры в жаропрочном никелевом сплаве после селективного лазерного сплавления и термической обработки / И. А. Тренинков, Е. В. Филонова, П. Н. Медведев, Е. А. Лукина // Металловедение и термическая обработка металлов. 2019. № 2 (764). С. 65–68.

Krylova S.E., Goltyapin M.I., Oplesnin S.P. Influence of gas-powder laser cladding’s technological parameters on structural characteristics of corrosion-resistant steels’ restored surface layer. IOP Conference Series: Materials Science and Engineering Processing Equipment, Mechanical Engineering Processes and Metals Treatment, 2018, pp. 042-058.

Krylova S.E., Manakov N.A., Oplesnin S.P., Yasakov A.S., Strizhov A.O. Effect of the parameters of gas-powder laser surfacing on the structural characteristics of reconditioned surface layer of corrosion-resistant steels. Metal Science and Heat Treatment, 2018, vol. 59, no. 9-10, pp. 641-645.

Крылова С. Е., Завьялов В. А., Оплеснин С. П. Обеспечение эксплуатационных характеристик оборудования нефтегазодобывающей отрасли на основе совершенствования технологии газопорошковой лазерной наплавки. // Вестник современных технологий. 2019. № 1 (13). С. 19–25.

Лукина Е. А., Зайцев Д. В., Заводов А. В. Состав и строение фазовых образований в жаропрочном никелевом сплаве в зависимости от параметров синтеза при селективном лазерном сплавлении и режимов термообработки // Вопросы материаловедения. 2019. № 3 (99). С. 14–22.

Dong W., Kokawa H., Tsukamoto S., Sato Y.S, Ogawa M. Mechanism Governing Nitrogen Absorption by Steel Weld Metal during Laser Welding. Metallurgical and Materials Transactions, 2004, vol. 35, no. 2.

Курочко Р. С. Сварка и пайка жаропрочных материалов горячего тракта ГТД /ВИАМ/1982-198570 // Авиационная промышленность. 1982. № 8.

Segen Estefen, Tetyana Gurova, Daniel Werneck, Anatoli Leontiev. Welding stress relaxation effect in butt-jointed steel plates. Marine Structures, 2012, 29, 211-225.

Gannon L, Liu Y, Pegg N, Snith M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates. Mar Struct, 2010, 23, 385-404.

Deng D, Murakawa H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Comput Mater, 2008, 43, 353-365.

Математическое описание и анализ сварочных высококонцентрированных тепловых источников / В. Я. Беленький, Д. Н. Трушников, Е. С. Саломатова, В. М. Язовских // Вестник ИжГТУ имени М. Т. Калашникова. 2012. № 3 (55). С. 46–50.

Published

06.11.2020

How to Cite

Krylova С. Е., Oplesnin С. П., Fot А. П., Ibragimov А. У., & Zavyalov В. А. (2020). Development of Technology for Robotic Laser Welding of Thin-Walled Products from Heat-Resistant Alloys. Vestnik IzhGTU Imeni M.T. Kalashnikova, 23(2), 46–53. https://doi.org/10.22213/2413-1172-2020-2-46-53

Issue

Section

Articles