Analytical Method for Studying the Force Interaction of Elements of Steel Ropes when Working on Blocks

Authors

  • V. N. Novikov Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
  • A. G. Ivanov Izhevsk State Agricultural Academy, Izhevsk, Russia
  • E. A. Kalentyev Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
  • V. V. Tarasov Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia

DOI:

https://doi.org/10.22213/2413-1172-2020-3-46-54

Keywords:

rope, durability, bending, block, pulley, grease

Abstract

The paper considers the issue of force interaction of elements of steel ropes (wire, strands, etc.) when working on blocks. Initially, the issue of mutual relative movement of wires during bending is investigated, this phenomenon is more commonly known as the deployment of a cross section of a wire rope. When determining the additional displacements, it was taken into account that the extension of the rope elements occurs on both sides of the point of incidence of the rope on the block (both in straight and curved sections of the rope). Additional displacements occurring in the curved part of the rope are also taken into account. Next, the problem of the analytical determination of the friction forces between the wires of a rope running onto a rotating block is solved. The approach used is based on solving the Euler equation for a thread bent on a drum. At the final stage, the dependences for the operation of the friction forces are established depending on the coefficient of friction between the contacting surfaces, due to the type of cable lubricant. In particular, it follows from the expressions obtained that with a decrease in the coefficient of friction between the elements of the rope, the work performed by the forces of friction will decrease. The results obtained confirm that the use of effective wire rope lubrication will contribute to energy saving and extend the life of the steel wire rope.

References

Spak K., Agnes G., Inman D. Cable Modeling and Internal Damping Developments. Appl. Mech. Rev., 2013, vol. 65, no. 1.

Cardou A., Jolicoeur C. Mechanical Models of Helical Strands. Appl. Mech. Rev.,1997, vol. 50, no. 1, pp. 1-14.

Feyrer K. Wire Ropes, Tension, Endurance, Reliability. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

Feyrer K. Wire Ropes Under Bending and Tensile Stresses. Wire Ropes: Tension, Endurance, Reliability. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 179-330.

Xiang L. Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads. Int. J. Solids Struct. Pergamon, 2017, vol. 129, pp. 103-118.

Ma W., Lubrecht A.A. Detailed contact pressure between wire rope and friction lining. Tribol. Int. Elsevier, 2017, vol. 109, pp. 238-245.

Wu W., Cao X. Mechanics model and its equation of wire rope based on elastic thin rod theory. Int. J. Solids Struct. Pergamon, 2016, vol. 102-103, pp. 21-29.

Chen Y., Meng F., Gong X. Full contact analysis of wire rope strand subjected to varying loads based on semi-analytical method. Int. J. Solids Struct. Pergamon, 2017, vol. 117, pp. 51-66.

Meng F. Study on effect of inter-wire contact on mechanical performance of wire rope strand based on semi-analytical method. Int. J. Mech. Sci. Pergamon, 2016, vol. 115-116, pp. 416-427.

Chen Y., Meng F., Gong X. Interwire wear and its influence on contact behavior of wire rope strand subjected to cyclic bending load. Wear. Elsevier, 2016, vol. 368-369, pp. 470-484.

Onur Y.A. Experimental and theoretical investigation of prestressing steel strand subjected to tensile load. Int. J. Mech. Sci. Pergamon, 2016, vol. 118, pp. 91-100.

Costello G.A. Theory of Wire Rope. New York, NY: Springer New York, 1997.

Сергеев С. Т. Стальные канаты. Киев : Техника, 1974. 328 с.

Глушко М. Ф. Стальные подъемные канаты. Киев : Техника, 1966. 327 с.

Малиновский В. А. Стальные канаты. Ч. 1. Не-которые вопросы технологии, расчета и проектирования. Одесса : Астропринт, 2001. 188 с.

Малиновский В. А. Стальные канаты. Ч. 2. Основы теории изгиба и взаимодействия с опорной поверхностью. Одесса Астропринт, 2002. 180 с.

Талтыкин В. С. Обоснование метода повышения долговечности шахтных канатов с учетом контактного взаимодействия проволок / Московский государственный горный университет, 2009. 132 с.

Динник А. Н. Новости по подъемным машинам // Статьи по горному делу. М. : Углетехиздат, 1957.

Биргер И. А., Мавлютов Р. Р. Сопротивление материалов. М. : Наука. Гл. ред. физ.-мат. лит., 1986. 560 с.

Сергеев С. Т. Надежность и долговечность стальных канатов. Киев : Техника, 1968. 238 с.

Сергеев С. Т. Теоретическое исследование переходных процессов при набегании каната на блок // Стальные канаты. 1964. Т. 1.

Глушко М. Ф. Депланация поперечных сечений и напряжения в канатах при изгибе // Стальные канаты. 1967. Т. 4, № 4. С. 65–75.

Глушко М. Ф. Исследование напряжений в стальных проволочных канатах // Расчеты на прочность. 1961. № 7.

Глушко М. Ф. Определение напряжений в проволоках спиральных канатов при изгибе // Научные тр. Харьковского горного ин-та. 1958. № 6.

Published

08.11.2020

How to Cite

Novikov В. Н., Ivanov А. Г., Kalentyev Е. А., & Tarasov В. В. (2020). Analytical Method for Studying the Force Interaction of Elements of Steel Ropes when Working on Blocks. Vestnik IzhGTU Imeni M.T. Kalashnikova, 23(3), 46–54. https://doi.org/10.22213/2413-1172-2020-3-46-54

Issue

Section

Articles