Influence of Diagnostic Stepper Motor Parameters on Criterion of Identifiability for Nonlinear Discrete Model by State Space
DOI:
https://doi.org/10.22213/2413-1172-2020-4-52-59Keywords:
stepper motor, discrete model, identifiability, state space, diagnosticsAbstract
The paper discusses the influence of such parameters of a stepper motor as phase resistance and inductance, moment of inertia on the criterion of identifiability of the drive model. To study the influence of these parameters, a nonlinear discrete model of a stepper motor in the state space is used.
A measurement matrix is proposed taking into account the reduced measurement error. The determinant of the measurement matrix is obtained with the maximum errors in the lower and higher sides in the worst case. It is concluded that only the matrix of the state of the stepping motor affects the identifiability, which will ultimately determine the rank of the extended matrix. The criterion for the loss of identifiability of the model is determined as the minimum threshold value of the determinant of the extended state matrix for cases of the exit of such parameters as resistance and inductance of the winding, moment of inertia from the space of realizable values of a working stepper motor.
A simulation model of a stepper motor has been developed in a domestic software product for modeling technical systems SimInTechto to calculate the minimum definition of the extended state matrix. If the winding resistance is reduced to 0.28 Om, the model of the step engine is reduced. The reason for this may be the inter-machine closure in the winding of the step motor. If the inductivity of the winding increases to 0.0002 H, the identifiability of the step engine model is lost. Changing the moment of inertia of the step engine in a wide range practically does not result in loss of model identifiability.
Based on the analysis of changes in the minimum determinant of the extended state matrix, the identifiability criterion of the stepper motor model, it is possible to solve the problem of diagnostics at the stages of production, operation and repair.References
Trefilov S.A., Nikitin Yu.R. Robot drives diagnostics by identifiability criterion based on state matrix. Instrumentation Engineering, Electronics and Telecommunications - 2019: Procю of the V International Forum (Izhevsk, Russia, November 20-22, 2019). Izhevsk, Kal-ashnikov ISTU Publ., 2019, pp. 105-114.
Никитин Ю. Р., Трефилов С. А. Разработка системы диагностирования приводов мобильных роботов // Фундаментальные и прикладные проблемы техники и технологии. 2020. № 4-1 (342). С. 59–68. DOI: 10.33979/2073-7408-2020-342-4-1-59-67.
Лекомцев П. В., Никитин Ю. Р., Трефилов С. А. Моделирование гибридного шагового двигателя в пространстве состояний при переменном моменте сопротивления нагрузки // Интеллектуальные системы в производстве. 2020. Т. 18, № 3. С. 58–63. DOI: 10.22213/2410-9304-2020-3-58-63.
Трефилов С. А., Никитин Ю. Р. Диагностика приводов роботов на базе двигателя постоянного тока по критерию идентифицируемости нелинейной дискретной модели в пространстве состояний // Вестник УГАТУ. 2020. Т. 24, № 1 (87). С. 103–110.
Эйкхофф П. Основы идентификации систем управления. М. : Мир, 1975. 686 с.
Современные методы идентификации систем / под ред. П. Эйкхоффа. М. : Мир, 1983. 400 с.
Гроп Д. Методы идентификации систем. М. : Мир, 1979. 302 с.
Льюнг Л. Идентификация систем. Теория для пользователя. М. : Наука, 1991. 32 с.
Сейдж Э. П., Мелса Дж. Л. Идентификация систем управления. М. : Наука, 1974. 248 с.
Сейдж Э. П., Мелс Дж. Л. Теория оценивания и ее применение в связи и управлении. М. : Связь, 1976. 496 с.
Цыпкин Я. З. Основы информационной теории идентификации. М. : Наука, 1984. 320 с.
Райбман Н. С. Что такое идентификация? М. : Наука, 1970. 118 с.
Штейнберг Ш. Е. Идентификация в системах управления. М. : Энергоатомиздат, 1987. 80 с.
Beard R.V. Failure accommodation in linear system through self reorganization (PhD thesis). MIT, Massachusetts, USA, 1971, 376 p.
Jones H.L. Failure detection in linear systems (PhD thesis). MIT, Massachusetts, USA, 1973, 459 p.
Frank P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results. Automatica, vol. 26, no. 3, 1990, pp. 459-474.
Isermann R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Berlin; New York, Springer, 2006, 475 p.
Basseville M., Nikiforov I. V. Detection of Abrupt Changes: Theory and Application. Prentice Hall information and system sciences series. Englewood Cliffs, New Jersey, Prentice Hall, 1993, 447 p.
Ding S.X. Model-based Fault Diagnosis Techniques. Design Schemes, Algorithms, and Tools. Springer, 2008, 473 p. DOI: 10.1007/978-3-540-76304-8.
Luo H. Plug-and-Play Monitoring and Performance Optimization for Industrial Automation Processes. Springer Fachmedien Wiesbaden GmbH, 2017, 158 p.