Development of Software and Hardware for Simulating the Operation of Radio Communication Facilities
DOI:
https://doi.org/10.22213/2413-1172-2020-4-60-68Keywords:
automated control, system, LabVIEW, Rohde & Schwarz, National Instruments, electronic jammingAbstract
The paper is devoted to developing a software and hardware complex that allows simulating the operation of communication facilities under the influence of natural and deliberate interference. The hardware and software complex is based on Rohde & Schwarz instruments and National Instruments equipment. The developed software and hardware complex allows taking into account the physical characteristics of real transceiver paths of communication facilities and communication channels. Simultaneously, the software and hardware complex can use both existing communication means and SDR transceivers as a source and receiver of signals.
In the course of work on developing a software and hardware complex, programs were designed for automated control of devices (Rohde & Schwarz) and equipment (National Instruments), which are part of the developed software and hardware complex. Also, software and hardware modeling of communication facilities' operation using OFDM signals under the influence of deliberate interference was carried out.
As a result of software and hardware modeling of communication facilities' operation under the influence of deliberate interference, the OFDM signal's stability to interference in the form of a tone and analog FM signal was investigated. Based on the simulation results, graphs of the dependence of the bit error probability on the level of the interfering signal (interference) were obtained. The results show that with an increase in the interference level's value, the probability of a bit error increases. For example, when the interference in the form of a harmonic tone signal with a level of 10 dBm affects the transmission of an OFDM signal, the probability of a bit error is 0.2414; with an interference level of 15 dBm, the probability of a bit error is 0.3806. Also, under the influence of interference in the form of an analog FM signal, we see that with an increase in the interference level's value, the probability of a bit error increases. For example, when the interference level is -30 dBm, the bit error probability is 0.0054; when the interference level is -25 dBm, the bit error probability is 0.065.
The developed hardware and software complex for simulating communication facilities' operation in the conditions of electronic countermeasures allows you to quickly change the parameters of electronic warfare and assess the impact of electronic interference on communication facilities' operation. The developed software of the complex provides automated control of devices and equipment. The complex allows you to set operating modes from a personal computer.References
Rupali B.P., Kulat K.D., Gandhi A.S. SDR Based Energy Detection Spectrum Sensing in Cognitive Radio for Real Time Video Transmission. Modelling and Simulation in Engineering, 2018, Article ID 2424305, 10 p. doi.org/10.1155/2018/224305.
Tanveer A., Khan Z.U., Malik A.N., Qureshi I.M., Lee S. Flexible Queuing Model for Number of Active Users in Cognitive Radio Network Environment. Wireless Communications and Mobile Computing, 2018. doi.org/10.1155/2018/8349486.
Halloush R., Musa A., Salameh H.B., Halloush M., Almalkawi I. A resource sharing platform for resource-constrained software defined cognitive radio networks. Fifth International Conference on Software Defined Systems (SDS), Barcelona, 2018, pp. 32-39. doi: 10.1109/ SDS.2018.8370419.
Fabio Principe, Giacomo Bacci, Filippo Giannetti, Marco Luise. Software-Defined Radio Technologies for GNSS Receivers: A Tutorial Approach to a Simple Design and Implementation. International Journal of Navigation and Observation, 2011, Article ID 979815, 27 p. doi.org/10.1155/2011/979815.
Van Tam Nguyen, Frederic Villain, Yann Le Guillou. Cognitive Radio RF: Overview and Challenges. VLSI Design, 2012, Article ID 716476, 13 p. doi.org/10.1155/2012/716476.
Definition of cognitive radio system 2009 Report ITU-R SM.2152 09/2009 (Geneva).
Васильев О. И., Нистюк А. И. Тактильная связь с телекоммуникационными устройствами // Интеллектуальные системы в производстве. 2015. № 2 (26). С. 85–88.
Построение системы контроля и тестирования радиосистем как элемент IOT / В. В. Хворенков, А. И. Нистюк, Р. А. Хатбуллин, А. А. Зыкин // Вестник ИжГТУ имени М. Т. Калашникова. 2018. Т. 21, № 3. С. 155–165. DOI: 10.22213/2413-1172-2018-3-155-165.
Алгоритмы управления режимами работы си-стемы когнитивного радио / Г. А. Благодатский, А. Н. Копысов, В. В. Хворенков, И. С. Батурин // Вестник ИжГТУ имени М. Т. Калашникова. 2019. Т. 22, № 4. С. 93–106. DOI: 10.22213/2413-1172-2019-4-93-106.
Fuqin Xiong. Digital Modulation Techniques. Second Edition. ARTECH HOUSE, INC. 685 Canton Street Norwood, MA, 2006, 1039 p.
Ермолаев В. Т., Флаксман А. Г. Теоретические основы обработки сигналов в беспроводных системах связи : монография. Н. Новгород : Изд-во ННГУ им. Н. И. Лобачевского, 2011. 368 с.
Использование технологии «интернет вещей» для создания автоматизированных систем контроля и тестирования радиосистем / А. Н. Копысов, В. В. Хворенков, А. А. Зыкин, М. М. Марков, А. А. Богданов // Успехи современной радиоэлектроники. 2018. № 12. С. 71–76. DOI: 10.18127/j20700784-201812-15.
Программно-аппаратный комплекс для имитации радиоэлектронного противодействия работе средств связи / М. А. Бояршинов, Р. А. Хатбуллин, А. А. Зыкин, Ю. Н. Черенков, Ю. Т. Загидуллин, А. А. Симушин // Приборостроение в XXI веке – 2019. Интеграция науки, образования и производства : Сб. материалов XV Всерос. науч.-техн. конф. (Ижевск, 20–22 ноября 2019 г.). Ижевск : Изд-во ИжГТУ имени М. Т. Калашникова, 2019. С. 194–202.