Data Transmission Model with Lost Fragments Recovery Based on Application Layer ARQ

Authors

  • A. V. Abilov Kalashnokov ISTU, Izhevsk
  • A. V. Chunaev АО «Эр-Стайл Софтлаб», Москва
  • A. I. Nistyuk Kalashnokov ISTU, Izhevsk
  • I. A. Kaisina Kalashnokov ISTU, Izhevsk

DOI:

https://doi.org/10.22213/2413-1172-2020-4-85-94

Keywords:

application layer, data fragment, ARQ, modelling, Data loss ratio

Abstract

Wireless networks in difficult conditions of signal receiving are characterized by a high level of burst data losses, at which a large number of data fragments can be lost in a row. In this case, to recover the lost data, the use of forward error correction methods (FEC) in most cases does not give a sufficient effect. The use of standard data loss recovery methods based on automatic retransmission request (ARQ) at the data link and transport layers of the OSI model can lead to significant delays, which is often unacceptable for real-time streaming services. In such a case, it may be preferable to skip the piece of data rather than delay waiting for the piece to be delivered on retransmissions. The use of ARQ-based techniques on application layer of OSI model for data streaming allows for a more efficient recovery of lost data chunks in wireless networks with a high level of burst losses. The known models of a discrete channel for wireless networks allow for analytically assessing the probability of data loss, however, they do not take into account cases with retransmission of lost data. The study proposes a mathematical model of data transmission in a wireless communication channel based on the Gilbert model, which takes into account the loss recovery by the ARQ method and allows you to calculate the data loss ratio. To check the adequacy of the proposed model, a software was developed that ensures the transmission of data streaming in a wireless communication network with recovery of fragment losses at the application level, and a corresponding experimental study was carried out. It is shown that the mathematical model takes into account the burstiness of transmitted data losses and their recovery by the ARQ method.

References

Gross J., Klaue J., Karl H., Wolisz A. Cross-layer optimization of OFDM transmission systems for MPEG-4 video streaming. Computer Communications, 2004, vol. 27, no. 11, pp. 1044-1055. DOI: 10.1016/j.comcom.2004.01.010.

Jin Y., Chang J., Le D. Performance Analysis of an Adaptive Hybrid FEC/ARQ Based on Hops for Wireless Multimedia Sensor Networks. Proc. of the IEEE International Conference on Communications and Intelligence Information Security, 2010, pp. 240-243. DOI: 10.1109/ICCIIS.2010.16.

Wu j., Cheng B., Wang M. Adaptive Source-FEC Coding for Energy-Efficient Surveillance Video Over Wireless Networks. IEEE Transactions on Communications, 2018, vol. 66, no. 5, pp. 2153-2168. DOI: 10.1109/TCOMM.2017.2785252.

Liu K., Zhang X., Dou Y. Adaptive FEC Allocation Algorithm for Wireless Video Transmission. Proceedings of the IEEE 2nd International Conference on Cybernetics, Robotics and Control (CRC), 2010, pp. 130-133. DOI: 10.1109/CRC.2017.12.

Liankuan Z., Deqin X., Yi T., Yang Z. Adaptive error control in Wireless Sensor Networks. Proc. of the IET International Conference on Wireless Sensor Network (IET-WSN-2010), 2010. DOI: 10.1049/cp.2010.

Baguda Y.S., Fisal N., Syed S.H., Latiff L.A., Yu-sif S.K., Rashid R. Sani D. Adaptive FEC error control scheme for wireless video transmission. Proc. of the 12th International Conference on Advanced Communication Technology (ICACT), 2010, pp. 565-569. DOI: 10.1049/cp.2010.1080.

Harun N.Z., Ghazali O. Enhancement on adaptive FEC mechanism for video transmission over burst error wireless network. Proc. of the 7th IEEE International Conference on Information Technology in Asia, Kuching, Sarawak, 2011, pp. 1-6. DOI: 10.1109/CITA.2011.5999532.

Neckebroek J., Bruneel H., Moeneclaey M. Application Layer ARQ for protecting video packets over an indoor MIMO-OFDM link with correlated block fading. IEEE J. on Selected Areas in Communications, 2010, vol. 28, no. 3, pp. 467-475. DOI: 10.1109/JSAC.2010.100417.

Abilov A., Chunaev A., Vasiliev D. Priority re-transmission in AL-ARQ for MPEG streaming over WLAN. Proc. of the IEEE International Siberian Conference on Control and Communications (SIBCON), Omsk, 2015, pp. 1-6. DOI: 10.1109/SIBCON.2015.7146967.

Vasiliev D., Chunaev A., Abilov A., Kaysina I., Meitis D. Application Layer ARQ and Network Coding for QoS Improving un UAV-assisted networks. Proc. of the 25thConference of Open Innovations Association (FRUCT), 2019, no. 25, pp. 353-360. DOI: 10.23919/FRUCT48121.2019.8981502.

Vasiliev D., Abilov A. Relaying Algorithms with ARQ in Flying Ad Hoc Networks. Proc. of the IEEE International Siberian Conference on Control and Communications (SIBCON), Omsk, 2015, pp. 1-5. DOI: 10.1109/SIBCON.2015.7147016.

Чунаев А. В., Абилов А. В., Павлова М. М. Алгоритм AL-ARQ для потоковой доставки видеоданных в беспроводной локальной сети // Инфокоммуникационные технологии. 2015. Т. 13, № 1. С. 68–73.

Tao T., Lu J., Jianhua L. Hierarchical Markov model for burst error analysis in wireless communica-tions. Proc. of the IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, 2001, vol. 4, pp. 2843-2847. DOI: 10.1109/VETECS.2001.944120.

Jiang X., Shi Z. Huang L.F. A new scheme of establishing packet loss patterns for wireless video transmission based on Gilbert model. Proceedings of the IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN07), Shanghai, 2007, pp. 205-208. DOI: 10.1049/cp:20070119.

Salih O.S., Wang C., Laurenson D.I., He Y. Hidden Markov model for packet-level error in bursty digital wireless channels. Proc. of the Loughborough Antennas & Propagation Conference, 2009, pp. 385-388. DOI: 10.1109/LAPC.2009.5352446.

Feng J., Liu Z., Ji Y. Wireless Channel Loss Analysis - A Case Study Using WiFi-Direct. Proc. of the International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, 2014, pp. 244-249. DOI: 10.1109/IWCMC.2014.6906364.

Nielsen J.J., Leyva-Mayorga I. Popovski P. Reliability and Error Burst Length Analysis of Wireless Multi-Connectivity. Proc. of the 16th International Symposium on Wireless Communication Systems (ISWCS), Ou-lu, Finland, 2019, pp. 107-111. DOI: 10.1109/ISWCS.2019.8877248.

Мальцев Г. Н., Джумков В. В. Обобщенная модель дискретного канала передачи информации с группированием ошибок // Информационно-управляющие системы. 2013. № 1. С. 27–33.

Шестаков В. В., Манонина И. В. Моделирование потока ошибок для цифровых радиотрактов // Системы синхронизации, формирования и обработки сигналов. 2019. Т. 10, № 5. С. 21–28.

Марков М. В. Модели дискретных каналов связи // Сервис в России и за рубежом. 2011. № 1. С. 143–156.

Чунаев А. В., Емельянов В. Н., Абилов А. В. Программный анализатор качества передачи потоковых данных // Молодые ученые – ускорению научно-технического прогресса в XXI веке : сб. тр. науч.-техн. конф. Ижевск : Изд-во ИжГТУ, 2011. С. 64–70.

Published

30.12.2020

How to Cite

Abilov А. В., Chunaev А. В., Nistyuk А. И., & Kaisina И. А. (2020). Data Transmission Model with Lost Fragments Recovery Based on Application Layer ARQ. Vestnik IzhGTU Imeni M.T. Kalashnikova, 23(4), 85–94. https://doi.org/10.22213/2413-1172-2020-4-85-94

Issue

Section

Articles