Comparative Evaluation of Calculated and Experimental Data on the Stress-Strain Condition of Cylindrical Gearwheel Arc Teeth

Authors

  • K. V. Syzrantseva Tyumen Industrial University, Tyumen
  • D. S. Kolbasin Tyumen Industrial University, Tyumen

DOI:

https://doi.org/10.22213/2413-1172-2021-1-45-52

Keywords:

gear transmission, circular (arc) teeth, stress-strain condition, ANSYS, strain gauges

Abstract

Circular (arc) teeth gears have a higher load capacity as well as the ability of self-adjustment in the conditions of unbraced machine bodies. For this reason, they are more preferable in heavy-duty transmissions of traction machines. The previously performed studies allow us to determine the optimal geometry of arc teeth surfaces, which provides maximum contact endurance of gears under specified operating conditions. However, for gears whose teeth are subjected to heat-hardening, the most important criterion is the bending strength of the teeth, estimated by the tensile stress at the root of the tooth.

The paper presents a finite element analysis of the stress-strain condition of the arc gear tooth of a locomotive in the ANSYS software package when it is loaded at the top land with a distributed load obtained from solving the contact problem using an analytical method. Calculations of the total displacements and main stresses that characterize the stretching in the metal and are responsible for the occurrence and growth of fatigue cracks are carried out for two loading options: from the convex and concave sides of the tooth. A comparison of the finite element analysis and the strain measurement results of arc teeth in the form of stresses in the root of the tooth on the compressed and stretched sides is considered. Their good coordination is shown: the maximum disagreement between the resistive strain gage readings and the tensile stresses averaged over the resistor base was 11.22 %. However, it has been concluded that the real stresses in the tooth root are averaged and reduced by strain gauges, which should be taken into account in further studies of gear bending strength and reliability. For a more complete strain and stress distribution pattern in the designed parts, it will be more rational to conduct two studies: both computer modeling, and benchmark tests of full-scale samples with further coordination of their results.

References

Chang Q., Hou L., Li B., Jia1 B. Modal analysis of cylindrical gears with arcuate tooth trace. Periodica Polytechnica Mechanical Engineering, 2015, no. 59, pp. 23-29. DOI: 10.3311/PPme.7540.

Jiang Y Q., Hou L., Zhao Y. The equation of the contact line of the involute curvilinear-tooth cylindrical gear pump for the agricultural tractor. Open Mechanical Engineering J., 2014, no. 8, pp. 879-884. DOI: 10.2174/1874155X01408010879.

Syzrantseva K., Syzrantsev V., Babichev D. Comparative analysis of stress-strain condition of cylindrical gears arc teeth and spurs. Lecture Notes in Mechanical Engineering, 2020, vol. 1, pp. 101-108. DOI:10.1007/978-3-030-22041-9.

Syzrantseva K.V., Syzrantsev V.N., Kolbasin D.S. Comparative estimation of the failure probability of cylindrical arc and helical gears by tooth bending endurance. Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS-2019): Proc. of the International Conference. Ekaterinburg, 2019, vol. 2176, Article 020010. DOI: 10.1063/1.5135122.

Сызранцев В. Н., Сызранцева К. В. Цилиндрические передачи с арочными зубьями: геометрия, прочность, надежность : монография. Тюмень : ТИУ, 2021. 170 с. ISBN 978-5-9961-2378-0.

Syzrantseva K.V., Syzrantsev V.N., Il’inykh V.N. Assessment of the probability of failure-free operation of the drilling rig top drive system gearbox by nonparametric statistics methods. Science and technologies in geology, exploration and mining: Proc. of 19th International multidisciplinary scientific geoconference. Albena, Bulgaria, 2019, 30.06 - 06.07, pp. 87-94.

Liu Y., Zhang J., Zhao X. A new nonparametric screening method for ultrahigh-dimensional survival data. Computational Statistics and Data Analysis, 2018, vol. 119, pp. 74-85.

Baptista S.D., Chanussot J., Favre A.-C., Borgnat P. A nonparametric test for slowly-varying non stationarities. Signal Processing, 2018, vol. 143, pp. 241-252.

Кошкин Г. М. Гладкое непараметрическое оценивание функции интенсивности отказов и ее первых двух производных // Известия высших учебных заведений. Физика. 2016. Т. 59, № 6. С. 70–78.

Голофаст С. Л., Шоцкий С. А. Вероятностный подход к оценке прочности температурно-деформируемых участков подземных трубопроводов // Экс-позиция нефть и газ. 2018. № 5 (65). C. 51–56.

Jia F., Hou L., Wei Y., Li B., You Y. Modelling and bending strength analysis of cylindrical gears with arcuate tooth trace. Australian J. of Mechanical Engineering, 2015, vol. 13, pp. 77-86. DOI: 10.7158/

M13-068.2015.13.2.

Cherniavsky Alexander. Crack Patterns under Mechanical Loading. Procedia Engineering, 2017, 206, 163-168. 10.1016/j.proeng.2017.10.454.

Mohammed A M., Kulkarni A.S., Sathiya P. Finite element modelling and characterization of friction weld-ing on UNS S31803 duplex stainless steel joints. Engineering Science and Technology, 2015, vol. 18, no. 4, pp. 704-712. DOI:10.1016/j.jestch.2015.05.002.

Aлбагдади Б. М. Х., Чернявский А. О. Сравнение критериев моделирования разрушения трубопроводов методом конечных элементов // Вестник Южно-Уральского государственного университета. Машиностроение. 2017. Т. 17. С. 13–20.

Krishnan L. Analytical modeling of FRP con-fined R.C. Column using ANSYS. International J. of Applied Engineering Research (IJAER), 2015, vol. 10, no. 38, pp. 28156-28161.

Belyaev A.I., Siritsyn A.I., Siritsyn D.A. Wear and fatigue resistance of arched gear teeth in flexure. Russian Engineering Research, 1997, no. 17, pp. 6-9.

Sun Z., Hou L., Wang J., Li W., Chang Q. Contact strength analysis of circular-arc-tooth-trace cylindrical gear. J. of the Brazilian Society of Mechanical Sciences and Engineering, 2016, vol. 38, pp. 999-1005.

Tang Y., Liu Q.Y., Xie C., Chen S.W. Study on stress distribution of a subsea Ram BOP body based on simulation and experiment. Engineering Failure Analysis, 2015, vol. 50, pp. 39-50. DOI: 10.1016/j.engfailanal.

12.018.

Wei Y., Ma D., Wu Y., Luo L., Bai Q., Hou L. Study on the tooth surface and curvature characteristics of cylindrical gear with variable hyperbolic arc-tooth-trace. Advanced Engineering Science, 2017, vol. 49, pp. 196-203. DOI: 10.15961/j.jsuese.201700372.

Burkov P.V., Burkova S.P., Knaub S.A. Stress and strain state analysis of defective pipeline portion. IOP Conf. Series: Materials Science and Engineering, 2015, vol. 91. DOI:10.1088/1757-899X/91/1/012055.

Syzrantseva K., Dvoynikov M. Computer Analy-sis of Durability and Leakproofness of Multilateral Junction of Wells. IOP Conf. Series: Materials Science and Engineering, 2016, vol. 142. DOI:10.1088/1757-899X/142/1/012118.

Published

07.05.2021

How to Cite

Syzrantseva К. В., & Kolbasin Д. С. (2021). Comparative Evaluation of Calculated and Experimental Data on the Stress-Strain Condition of Cylindrical Gearwheel Arc Teeth. Vestnik IzhGTU Imeni M.T. Kalashnikova, 24(1), 45–52. https://doi.org/10.22213/2413-1172-2021-1-45-52

Issue

Section

Articles