Smart Control System for the Wind Energy Networks

Authors

  • L. M. Abdali Sevastopol State University, Sevastopol
  • F. M. Al-Rufaee Sevastopol State University, Sevastopol
  • B. A. Yakimovich Sevastopol State University, Sevastopol
  • V. V. Kuvshinov Sevastopol State University, Sevastopol

DOI:

https://doi.org/10.22213/2413-1172-2021-1-102-112

Keywords:

wind turbine, wind power, control, permanent magnet synchronous generator (PMSG), intelligent control system

Abstract

The operation of wind power plants is not stable and reliable enough; this is due to the inconstancy of the wind flow and the variability of wind directions. However, the global wind energy is developing at a rather high pace and in the future, the share of generating capacities associated with the transformation of the wind flow will make up a significant part of the entire electricity industry. To eliminate such factors when designing the operation of wind turbines, it is necessary to more fully use the automatic control systems not only for the parameters associated with the operation of mechanical parts, but also for the electrical characteristics of wind turbines based on power electronics.

The generation of electrical energy by converting wind flow has become the backbone of renewable energy in power systems around the world. Modern wind turbine (WT) systems that convert wind currents at different speeds and are located in large wind power plants have found better recognition and captured most of the market share. Such installations convert wind energy using power electronic systems. Power electronics technology significantly improves the controllability of wind turbines. The use of electronic systems in wind power allows you to effectively solve the problems associated with the requirements for connecting to the grid.

This research presents the smart control of a global wind energy conversion system (WECS) with a variable speed wind turbine mounted on a permanent magnet synchronous generator (PMSG - WT). Many of the parts of the PMSG - WT that provide full power monitoring, PMSG control, and DC voltage keeping are discussed in the proposed control design. A fractional PI controller is used to construct the suggested controller, where the controller parameters are configured successfully using the metaheuristic optimization algorithm of the new Bat (BA). It is used when the wind speed varies and is compared to a standard PI controller in order to illustrate and compare the output of this controller. The simulation results clearly illustrate the efficacy of the controller proposed. In addition, the PMSG-WT installation is effectively tracked in different operating modes according to the proposed scheme.

References

Morlaye Sekou Camara, Mamadou Bailo Camara, Brayima Dakyo and Hamid Gualous. Permanent Magnet Synchronous Generator for Offshore Wind Energy System Connected to Grid and Battery - Modeling and Con-trol Strategies. International J. of Renewable Energy, 01-03-2015, Le Havre, France.

Hodzic M., Tai L.C. Grey predictor reference model for assisting particle swarm optimization for wind turbine control. Renew. Energy, 2016, 86, 251-256.

Dahmane M., Bosche J. and El-Hajjaji A. Control of Wind Conversion System Used in Autonomous System. Energy Procedia, 2014, vol. 62, pp. 482-491.

Mohammed Aslam Husain and Abu Tariq. Modeling and Study of a Standalone PMSG Wind Generator System Using MATLAB/SIMULINK. Universal J. of Electrical Engineering, 2014, pp. 82-94. Aligarh Muslim University (AMU), India.

Apata O., Oyedokun D. Novel reactive power compensation technique for fixed speed wind turbine generators: Proc. of the IEEE PES/IAS Power Africa, 2018, pp. 628-633.

Menezes E.J.N., Araújo A.M., Silva da Nadège Sophie Bouchonneau. A review on wind turbine control and its associated methods. J. Clean. Prod, 2018, vol. 174, pp. 945-953.

Tiwari R., Babu N.R. Recent developments of control strategies for wind energy conversion system. Renew. Sustain. Energy Rev., 2016, vol. 66, pp.268-285.

Wagner H., Mathur J. Operation and control of wind energy converters: Proc. of the Introduction to Wind Energy Systems Anonymous, Springer, 2018, pp. 63-74.

Morim R.B. Analysis of wind turbine power generation with individual pitch control: Proc. of the IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), 2019, pp. 1-6.

Sudhir Sharma, Shivani Mehta, Gurpreet Kaur. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm: Proc. of International Interdisciplinary Conference On Engineering Science & Management Held, December 2016.

Kumar D., Chatterjee K. A review of conventional and advanced MPPT algorithms for wind energy systems, Renew. Sustain. Energy Rev, 2016, vol. 55, pp. 957-970.

Kuvshinov V.V., Kolomiychenko V.P., Kakushkina E.G. Storage System for Solar Plants. Appl. Sol. Energy, 2019, vol. 55, no. 3, pp. 153-158. https://doi.org/10.3103/S0003701X19030046.

Kuznetsov N.P., Abd Ali M.L., Kuvshinov V.V., Issa A.H., Mohammed J.H. & Al-bairmani G.A. Investigation of the losses of photovoltaic solar systems during operation under partial shading. J. of Applied Engineering Science, 2020, vol. 18, no. 3, pp. 313-320. DOI: 10.5937/jaes18-24460.

Arnaltes S., Rodriguez-Amenedo J.L., & Montilla-DJesus M.E. Control of variable speed wind turbines with doubly fed asynchronous generators for stand-alone applications. Energies, 2018, vol. 11, pp. 26-32.

Abdali L.M., Al-Rufaee F.M., Kuvshinov V.V. Study of Hybrid Wind-Solar Systems for the Iraq Energy Complex. Appl. Sol. Energy, 2020, vol. 56, no. 4, pp. 284-290. https://doi.org/10.3103/S0003701X20040027.

Arnaltes S., Rodriguez-Amenedo J.L., & Montilla-DJesus M.E. Control of variable speed wind turbines with doubly fed asynchronous generators for stand-alone applications. Energies, 2018, vol. 11, pp. 26-32.

Kahla S., Soufi Y., Sedraoui M., Bechouat M. Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller. International J. of Re-newable Energy Research (IJRER), 2017, vol. 7, pp. 926-936.

Bao J. Feed forward control for wind turbine load reduction with pseudo-lidar measurement. Int. J. Autom. Comput., 2018, vol. 15, pp. 142-155.

Моделирование и контроль энергии ветра / Л. М. Абдали, Ф. М. Аль-Руфаи, Х. А. Исса, Х. Д. Мохаммед, Б. А. Якимович // X Всероссийская научно-практическая конференция «Научная инициатива иностранных студентов и аспирантов российских вузов» (Томск, 22–24 апреля 2020 г.). Томск : Изд-во ТПУ, 2020. С. 14–19.

Моделирование параметров управления интегрированной системой солнечной генерации и накопления энергии / Л. М. Абдали, В. В. Кувшинов, Э. А. Бекиров, Ф. М. Аль-Руфаи // Строительство и техногенная безопасность. 2020. № 18 (70). С. 133–142. DOI: 10.37279/2413-1873-2020-18-133-142.

Lan J., Patton R.J., and Zhu X. Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renew. Energy, 2018, vol. 116, pp. 219-231.

Оптимизация аккумулирования энергии в гибридных системах ветроэнергетики и фотовольтаики / Л. М. Абдали, Ф. М. Аль-Руфаи, Б. А. Якимович, В. В. Кувшинов // Вестник ИжГТУ имени М. Т. Калашникова. 2020. Т. 23, № 2. С. 100–108. DOI: 10.22213/2413-1172-2020-2-100-108.

Оценка потенциала ветроэнергетических ресурсов на юге Ирака / Ф. М. Аль-Руфаи, Л. М. Абдали, В. В. Кувшинов, Б. А. Якимович // Вестник ИжГТУ имени М. Т. Калашникова. 2020. Т. 23, № 3. С. 105–113. DOI: DOI: 10.22213/2413-1172-2020-3-105-113.

Yang X.S. A new metaheuristic batinspired algorithm: Nature inspired cooperative strategies for optimization (NICSO-2010). Springer, 2010, pp. 65-74. Berlin, Heidelberg.

Astolfi D., Scappaticci L., Terzi L. Fault diagnosis ofwind turbine gearboxes through temperature and vibrationdata. International J. of Renewable Energy Research (IJRER), 2017, vol. 7, no. 2, pp. 965-976.

Yang X.S, Gandomi A.H. Bat Algorithm: A Novel Approach for Global Engineering Optimization. Engineering Computations, 2012, vol. 29, iss. 5, pp. 464-483.

Guo D.D., Song J.G., Wang X.Z. Research on in-door coverage optimization strategy of electric wireless private network based on improved bat algorithm. Distrib. Util., 2019, no. 36, pp. 23-28.

Published

07.05.2021

How to Cite

Abdali Л. М., Al-Rufaee Ф. М., Yakimovich Б. А., & Kuvshinov В. В. (2021). Smart Control System for the Wind Energy Networks. Vestnik IzhGTU Imeni M.T. Kalashnikova, 24(1), 102–112. https://doi.org/10.22213/2413-1172-2021-1-102-112

Issue

Section

Articles