Mathematical Model of Spatial Motion of the Controlled Parachute-Tether System of the Wind Kite Type

Authors

  • V. M. Churkin Moscow Aviation Institute (National Research University)
  • T. Y. Churkina Moscow Aviation Institute (National Research University)
  • A. M. Girin Moscow Aviation Institute (National Research University)

DOI:

https://doi.org/10.22213/2413-1172-2021-4-17-24

Keywords:

mathematical model, parachute-tether system, controlled parachute, dome aerodynamics, sling tension force

Abstract

Mathematical modeling is created for the mathematical task of spatial motion of the controlled parachute-tether system of the “wind kite” type. The mathematical model parachute-tether system consists of a model of the main parachute and a model of the braking parachute. The parachutes are connected by the tether. The model of the main parachute is supposed to be the solid body. This solid body has two planes of symmetry. The braking parachute is the solid body with axial symmetry. The tether model is an absolutely flexible elastic thread. The tether is connected by ideal hinges with the main parachute and braking parachute. The control of the main parachute is carried out by changing the length of the control slings. Changing the length causes deformation of the dome. This is the reason for the change in its aerodynamics. Maneuvering of the main parachute occurs in the vertical plane, when the length of the control slings changes simultaneously. Maneuvering of the main parachute in space is carried out when the length of the control slings changes, when the slings are given a travel difference. The system of dynamic and kinematic equations is designed for calculating the controlled spatial movement of the main parachute, braking parachute and tether. The option exists when the mass of the tether and the forces applied to the tether cannot be neglected. The motion of the tether is represented by the equations of motion of an absolutely flexible elastic thread in projections on the axis of a natural trihedron. The mathematical model is represented by a system of ordinary differential equations and partial differential equations. The problem is solved using various numerical methods. The solution is possible with the help of an integrated numerical and analytical approach as well.

Author Biographies

V. M. Churkin, Moscow Aviation Institute (National Research University)

DSc (Physics and Mathematics)

T. Y. Churkina, Moscow Aviation Institute (National Research University)

PhD in Engineering

A. M. Girin, Moscow Aviation Institute (National Research University)

PhD in Engineering

References

Jóźwiak A., Kurzawiński S. The Concept of Using the Joint Precision Airdrop System in the Process of Supply in Combat Actions. Systemy Logistyczne Wojsk, 2019, vol. 51, no. 2, pp. 27-42. DOI: 10.37055/slw/ 129219.

Fields T., Yakimenko O. Development of a Steerable Single-Actuator Cruciform Parachute. J. of Aircraft, 2018, vol. 55, no. 3, pp. 1041-1049. DOI: 10.2514/1.C034416.

Fields T., LaCombe J., Wang E. Time-Varying Descent Rate Control Strategy for Circular Parachutes. J. of Guidance Control and Dynamics, 2015, vol. 38, no. 8, pp. 1468-1477. DOI: 10.2514/1.G000627.

Gao X., Zhang O., Chen Q., Wang W. Fluid-structure Interactions on Steerable Cruciform Parachute Inflation Dynamics. 5th International Conference on Mechanical and Aeronautical Engineering (ICMAE 2019), Series: Materials Science and Engineering, 2019, vol. 751.

Fagley C., Seidel J., McLaughlin T., Noetscher G., Rose T. Computational Study of Air Drop Control Mechanisms for Cruciform Parachutes. AIAA 2017-3541, Session: Aerodynamic Decelerator Systems: Aerial Delivery, 2017. DOI: 10.2514/6.2017-3541.

Ledkov A. Modeling the spatial motion of a space tether system with an inflatable balloon for raising payload orbit. International Conference on Information Technology and Nanotechnology (ITNT), 2020, pp. 1-5. DOI: 10.1109/ITNT49337.2020.9253250.

Negrean I., Kacso K., Schonstein C., Duca A., Rusu F., Cristea F., Haragas S. New Formulations on Motion Equations in Analytical Dynamics. Applied Mechanics and Materials, 2016, vol. 823, pp. 49-54. DOI: 10.4028/www.scientific.net/AMM.823.49.

Roithmayr C., Beaty J., Pei J., Richard Barton R., Matz D. Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3378, Session: Parachute Modeling and Analysis, 2019. Available at: https://doi.org/10.2514/6.2019-3378

Jing Pei J. Nonlinear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3379, Session: Parachute Modeling and Analysis, 2019. Available at: https://doi.org/10.2514/6.2019-3379.

Чуркин В. М. Устойчивость и колебания парашютных систем. Москва : URSS, 2018. 230 с.

Иванов П. И. Расчет аэродинамической нагрузки на планирующий парашют при его развертывании и перегрузке, действующей на сбрасываемый объект // Авиационная и ракетно-космическая техника. 2021. Т. 28, № 2. С. 115-126. DOI: 10.34759/ vst-2021-2-115-126.

Li G., Shi G., Zhu Z.H. Three-Dimensional High-Fidelity Dynamic Modeling of Tether Transportation System with Multiple Climbers. JGCD, 2019, vol. 42, no. 8. DOI: 10.2514/1.G004118.

Htun T. Z., Suzuki H., Kuwano A., Tomobe H. Numerical Motion Analysis of ROV coupled with Tether Applying 24-DOFs Absolute Nodal Coordinate Formulation. Proc. of the Twenty-ninth International Ocean and Polar Engineering Conference, 2019, vol. 1, p. 1553. ISBN 978-1 880653 85-2; ISSN 1098-6189.

Suzuki H., Tomobe H., Kuwano A., Takasu K., Htun T.Z. Numerical Motion Analysis of ROV applying ANCF to Tether Cable Considering its Mechanical Property. Proc. of the Twenty-eight International Ocean and Polar Engineering Conference, 2018, vol. 1, pp. 365-372. ISBN 978-1-880653-87-6; ISSN 1098-6189.

Suzuki H., Yamazoe A., Htun T.Z. Numerical Modeling of Cable-winch System for ROV Launching and Recovering Processes based on the Finite Element Approach. Proc. of the Thirtieth International Ocean and Polar Engineering Conference, 2020, vol. 1, p. 1287. ISBN 978-1-880653-84-5; ISSN 1098-6189.

Liu C., Ding L., Gu J. Dynamic Modeling and Motion Stability Analysis of Tethered UAV. 5th International Conference on Robotics and Automation Sciences (ICRAS), 2021, pp. 106-110. DOI: 10.1109/ ICRAS52289.2021.9476254.

Migliore H., McReynolds E. Ocean Cable Dynamics Using on Orthogonal Collocation Solution. AIAA J., 1982, vol. 20, no. 8, pp. 1084-1091.

Razoumny Y., Kupreev S., Misra A.K. Method of Tethered System Control for Deorbiting Objects Using Earth’s Atmosphere (IAA-AAS-DyCoSS3-152 - AAS 17-923), 2017. Available at: https://www.univelt.com/linkedfiles/v161%20Contents.pdf

Razoumny Y., Kupreev S., Misra A.K. The Research Method of Controlled Movement Dynamics of Tether System / Conference: First IAA/AAS SciTech Forum on Space Flight Mechanics and Space Structures and Materials. IAA-AAS-SciTech2018-113 - AAS 18-832, 2020, pp. 417-432. Available at: https://www.univelt.com/linkedfiles/v170%20Contents.pdf

Williams P., Lansdorp B., Ockels W. Optimal Crosswind Towing and Power Generation with Tethered Kites. J. of Guidance, Control, and Dynamics, 2009, vol. 31, no. 1, pp. 81-93. DOI: 10.2514/1.30089.

Published

21.12.2021

How to Cite

Churkin В. М., Churkina Т. Ю., & Girin А. М. (2021). Mathematical Model of Spatial Motion of the Controlled Parachute-Tether System of the Wind Kite Type. Vestnik IzhGTU Imeni M.T. Kalashnikova, 24(4), 17–24. https://doi.org/10.22213/2413-1172-2021-4-17-24

Issue

Section

Articles