Reduction of Complex Spatial Warping of Crankshaft Forgings to Ensure Guaranteed Allowance for Root and Connecting Rod Necks

Authors

  • A. V. Czech Forge Plant of KAMAZ PJSC
  • D. T. Safarov Naberezhnye Chelny Institute of Kazan (Volga Region) Federal University

DOI:

https://doi.org/10.22213/2413-1172-2022-1-77-90

Keywords:

forging of the crankshaft, hot forging, statistical control methods, allowance indicators, root and connecting rod necks

Abstract

In the article, from the total set of dimensions of the crankshaft forgings, geometric accuracy indicators reflecting their complex spatial warping - the diametrical dimensions of the root and connecting rod necks, angular deviations of the connecting rod necks, the curvature of the third root neck, transverse displacement along the die line - are highlighted. To estimate the value of spatial warping according to the selected accuracy indicators during the period of durability of the engravings of die inserts, a batch of crankshaft forgings was measured, followed by probabilistic and statistical analysis in the form of plotting histograms of distributions, normal distribution curves and Shewhart charts. On the basis of the obtained statistical data of value variability, a combination of their values is considered, leading to scrap of crankshaft forging connecting rod necks in the form of defects caused by forging under-allowance or non-straightness after mechanical processing. Under-allowance for root and connecting rod necks occurs at minimum values of diametrical dimensions and maximum values of angular size deviations, non-straightness along the third root neck and transverse displacement along the die line. It was found that the diametrical dimensions of the root necks range up to 4 mm; for the first, second and the third neck it ranges up to 2 mm, for the second neck - up to 4 mm. To prevent under-allowance, the adjustment is carried out along the upper limit of the tolerance. The range of forging lateral displacements along the die line is up to 0.6 mm, that is close to the upper limit of the tolerance. The curvature of the forging found in different mutually perpendicular directions varies. For the first installation of correction operation is up to 1 mm, for the second installation it is up to 1.5 mm, which requires improvements. The most unstable indicator of the connecting-rod neck relative position is the deviation of their angular position, reaching values up to 2 mm of their positive and negative values. A technical solution for the local modification of the engraving profiles of die inserts for hot forging correction, allowing to improve the calibration scheme of the crankshaft forging and enhance stability of the crankshaft forging manufacture by angular deviations of the connecting rod necks, as well as to reduce bending along the third root neck is considered.

Author Biographies

A. V. Czech, Forge Plant of KAMAZ PJSC

D. T. Safarov, Naberezhnye Chelny Institute of Kazan (Volga Region) Federal University

PhD in Engineering, Associate Professor

References

Solanki A., Sonigra S., Vajpayee V. Implementation of quality tools and effective strategies to boost production market standards for forged crankshafts: A case study of forging industry. Paper presented at the Materials Today, 2021, 47, 5970-5976. doi: 10.1016/j.matpr. 2021.04.537.

Wang X., Qi Z., Chen K., Liu Y., Wang E. Study on the forming accuracy of the three-cylinder crankshaft using a specific die with a preformed dressing.International Journal of Advanced Manufacturing Technology, 2019, 104, 551-564. doi: 10.1007/s00170-019-03909-6.

Kandrotaitė Janutienė R., Mažeika D. Modelling of induction heating of steel work piece for forging of crankshaft. Medziagotyra, 2018, 24, 345-350. doi: 10.5755/j01.ms.24.3.18313.

Karthik S., Silksonjohn J. A case study of 5s implementation in inspection process.International Journal of Mechanical and Production Engineering Research and Development, 2019, 9, 1469-1476. doi: 10.24247/ ijmperdjun2019154.

Noorbakhsh M., Moradi H. Design and optimization of multi-stage manufacturing process of stirling engine crankshaft. SN Applied Sciences, 2020, 2. doi: 10.1007/s42452-019-1820-6.

Hamrle P., Hlaváč J. Load analysis of crankshaft of two-point crank press. Paper presented at the Annals of DAAAM and Proceedings of the International DAAAM Symposium, 2018, 29, 0601-0608. doi: 10.2507/29th.daaam.proceedings.087.

Lu J., Cheng G., Wu M., Yang G., Che J. Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel. Journal of Iron and Steel Research International, 2020, 27, 608-616. doi: 10.1007/ s42243-019-00334-7.

Zhao F., Zhang Z., Liu Y., Zhang Z., Xie J. The coarse microstructure of medium-carbonmicroalloyed steel crankshafts: Formation mechanism and finish forging control. Steel Research International, 2020, 91. doi: 10.1002/srin.201900572.

Jiang B., Dong Z., Yang Z., Zhou L., Liu Y., Wang, Y. Analysis of the formation of surface crack on crankshaft after die forging. Transactions of the Indian Institute of Metals, 2015, 68, 553-559. doi: 10.1007/s12666-014-0485-5.

Мартюгин А. В., Володин И. М. Снижение влияние деформации при обрезке облоя на геометрическую точность и дисбаланс поковок коленчатых валов // Colloquium-journal. 2019. № 26-2 (50). С. 91-94.

Мартюгин А. В., Володин И. М. Анализ результатов исследования дисбаланса поковок коленчатых валов с использованием нейросети // Colloquium-journal. 2019. № 26 (50). С. 89-94.

Касьянов С. В., Карлова Т. В. Жизненный цикл деталей машины как непрерывный поток технологий // Вестник Брянского государственного технического университета. 2019. № 7 (80). С. 18-22.

Особенности проектирования технологических процессов горячей объемной штамповки с оригинальными требования к качеству поковок / А. В. Мартюгин, И. М. Володин, А. И. Володин, Г. Ф. Биктимирова // Современные наукоемкие технологии. 2019. № 4. С. 41-49.

Мартюгин А. В., Володин И. М., Володин А. И., Биктимирова Г. Ф. Совершенствование метода проектирования технологических процессов горячей объемной штамповки коленчатых валов с необрабатываемыми противовесами // Известия ТулГУ. Технические науки. 2020. № 6. С. 364-371.

Касьянов С. В., Могилевец В. Д. Производство автомобильной техники: информационно-технологическое сопровождение // Компетентность. 2021. № 3. С. 45-49.

Ермачков Р. О., Вяткин А. Г. Влияние способов наладки технологической системы на точность высотных размеров при осадке на гидравлическом прессе // Наука, техника и образование. 2019. № 2 (24). С. 16-24.

Антонюк Ф. И., Кузнецов И. В., Сорокин П. С., Ермачков Р. О. Технологические факторы повышения точности диаметральных размеров штучных (мерных) заготовок, изготавливаемых холодной осадкой // Современные наукоемкие технологии. 2018. № 7. С. 14-19.

САПР. Расчет припусков для механической обработки поверхностей деталей и определения размеров заготовок. Метод. Рекомендации МР 106-84. М. : ВНИИНМАШ, 1984 32 с.

Кужагильдин Р. С., Шутова Л. А. Повышение стойкости штампов для горячего деформирования // Социально-экономические и технические системы: исследование, проектирование, оптимизация. 2019. № 1 (80). С. 50-58.

Никишкин А. Е. Влияние трения на нагрузку и износ инструмента при объемной штамповке // Известия Тульского государственного университета. Технические науки. 2020. № 12. С. 581-584.

Published

02.06.2022

How to Cite

Czech А. В., & Safarov Д. Т. (2022). Reduction of Complex Spatial Warping of Crankshaft Forgings to Ensure Guaranteed Allowance for Root and Connecting Rod Necks. Vestnik IzhGTU Imeni M.T. Kalashnikova, 25(1), 77–90. https://doi.org/10.22213/2413-1172-2022-1-77-90

Issue

Section

Articles