Type and Size Filler Grain Selection During Abrasive Flow Machining of Non-Ferrous Alloys Rectangular Parts
DOI:
https://doi.org/10.22213/2413-1172-2022-2-6-13Keywords:
abrasive flow machining, rectangular part, abrasive grain, filler, diamond pasteAbstract
Abrasive flow machining is one of the promising technologies for finishing rectangular channels, which are characterized by a constant increase in accuracy and reduction of surface roughness. During modeling of the contact interaction of grains in the corners of rectangular part cross-section in the intended abrasive flow machining, the key features of the size and filler grain selection were fixed. In the proposed spherical grain model, the cutting edge is represented by an arc of a circle that fits into the angle of the cross-section of the part. It is confirmed that if the grain size exceeds the value of the inner radius of the rounded corner of the part, an untreated zone appears, with the area calculated using the CAD system on a straight, blunt and sharp angle. It is proved that the abrasive flow machining with a filler grain size not exceeding the value of the doubled radius of the inner rounding of the rectangular cross section is carried out. The physical properties, the shape of the cutting edges and the applicability of fillers, electrolytically produced corundum, silicon carbide and synthetic diamond were analyzed. The shape of a diamond grain, in comparison with the fillers mentioned above, shows a more rounded shape of the crystal faces, which causes greater microhardness and abrasive ability. The revealed features confirm the exclusion of a possible phenomenon, caricature in the process of post-processing. It is recommended to use abrasive grains of a certain grain size for uniform pretreatment of a rough surface, followed by polishing with an ointment-like diamond paste of channels of small transverse rectangular cross-section. Using as a filler a salve-like paste containing diamond grains allows to reduce medium viscosity and machining corners of rectangular section. Abrasive flow machining with medium viscosity with synthetic heat-resistant rubber as the base and a salve-like paste containing diamond grains is used for finishing machining of non-ferrous parts. The use of working media with diamond pastes will allow the internal channels of blanks made of various non-ferrous alloys to be treated with an abrasive flow. For the minimum cross sections of rectangular pipe blanks presented in this article, it is proposed to use the working medium of the following weight composition: synthetic heat-resistant rubber - 40 %, salve-like diamond paste ASN 60/40 PTO - 60 %. A number of general recommendations are proposed for further research.References
Косьяненко С. В., Патраев Е. В., Петрусев В.В., Трифанов И. В. Анализ технологичности деталей гибких волноводных секций космического аппарата // Известия высших учебных заведений. Машиностроение. 2021. №12(741). С. 53-61.
Zhakupova A.Y., Ondrisov D.B., Kanafin M.Z., Aukatova N.K., Kuranber B.N. Solving the problem of abrasive machining in the production of rocket and space technology details. Vestnik Evraziiskogo natsional’nogo universiteta imeni L.N. Gumileva. Seriya Fizika. Astronomiya, 2020, no. 2, pp. 42-49.
Зверинцева Л. В., Зверинцев В. В., Кочкина Г. В. Исследование рабочей среды при абразивно-экструзионной обработки. Технология машиностроения. 2021. № 5. С. 42-48.
Petare A.C., Jain N.K. A critical review of past research and advances in abrasive flow finishing process. The International Journal of Advanced Manufacturing Technology, 2018, vol. 97, Iss. 1-4, pp. 741-782. DOI: https://doi.org/10.1007/s00170-018-1928-7.
Youzhi Fu, Hang Gao, Qiusheng Yan, Xuanpling Wang, Xu Wang. An efficient approach to improving the finishing propeties of abrasive flow machining with the analyses of initial surface texture of workpiece. The International Journal of Advanced Manufacturing Technology, 2020. https://doi.org/10.1007/s00170-020-05173-5.
Palwinder Singh, Lakhvir Singh, Sehijpal Singh. Experimental Comparison of Abrasive Flow Machining and Magnetic Abrasive Flow Machining for Aluminium Tubes.International Journal for Research in Engineering Application & Management (IJREAM), 2018, vol. 04, Iss. 03. DOI: 10.18231/2454-9150.2018.0410.
Butola R., Jain R., Bhangadia P., Bandhu A., Walia R.S., Murtaza Q. Optimization to the parameters of abrasive flow machining by Taguchi method. Materials Today: Proceedings, 2018, vol. 05, Iss. 02. DOI: 10.1016/J.MATPR.2017.12.044.
Новосельский Н. К., Васильева Е. К., Сысоев А. С. Микрорезание при абразвино-экструзионной обработке // The Scientific Heritage. 2020. № 44-1 (44). С. 45-48.
Wang Tingting, Chen De, Zhang Weihua, An Luling. Study on key parameters of a new abrasive flow ma-chining (AFM) process for surface finishing. The International Journal of Advanced Manufacturing Technology, 2019, vol. 101, Iss. 2, pp. 39-54. https://doi.org/10.1007/s00170-018-2914-9.
Pshenko E.B., Shestakov I.Ya., Shestakov V.I. The research of thermophysical properties of the working environment for abrasive-extrusion processing. Siberian Journal of Science and Technology, 2019, vol. 20, no. 2, pp. 277-283.
Yinguang Li, Guizhen Song, Bowen Hon, Jianming Cheng. Study on the correlation between grain size and processing limit in abrasive flow machining. Journal of Physics: Conference Series, 2021, Conf. Ser. 1884 012002. DOI: 10.1088/1742-6596/1884/1/012002.
Xiu Tian-Xun, Wang Wei, Liu Kun, Wang Zhi-Yong, Wei Dao-Zhu. Characteristics of force chains in friction- al.interface during abrasive flow machining based on discrete element method. Advances in Manufacturing, 2018, 6, pp. 355-375. https://doi.org/10.1007/s40436-018- 0236-7.
Li Yinguang, Song Guizhen, Hon Bowei, Cheng Jianming. Stduy on the correlation between grain size and processing limit in abrasive flow machining. Journal of Physics: Conference Series, 2021. doi:10.1088/1742-6596/1884/1/012002
Рагулин В. Д., Бокова Л. Г. Особенности обработки деталей со сложными геометрическими поверхностями с использованием несвязанных абразивов // Современные материалы, техника и технологии. 2020. № 1 (28). С. 50-54.
Калимуллина З. А. Абразивные материалы, классификация, виды их характеристики // Аллея науки. 2018. № 11 (27). С. 42-45.
Применение роботизированной финишной обработки в свободном абразиве для алюминиевых цилиндров / А. С. Бабаев, Н. В. Лаптев, Е. В. Столов, А. Р. Семёнов // Актуальные проблемы в машиностроении. 2018. № 1-2. С. 31-36.
Cкрябин В. А. Финишная абразивная обработка тонкостенных пластин // Вестник Брянского государственного технического университета. 2021. № 9 (106). С. 15-22.
Swarn Singh, Harish Kumar, Santosh Kumar, Saurabh Chaitanya. A systematic review on recent advancements in Abrasive Flow Machining (AFM). Materials Today: Proceedings,. 2021. DOI 10.1016/j.matpr.2021.12.273
Chirov A. N., Sapegin A. M., Zhumabaev E. N., Sysoeva L. P., Shelikhova S. V. Abrasive extrusion processing of aluminum alloys. Journal of Advanced Research in Technical Science, 2018, no. 8, pp. 30-33.
Карпаченко К. А. Шлифование как разновидность абразивной обработки, виды, область применения. Типы шлифовального инструмента и материалы // Инновационные технологии в машиностроении, образовании и экономике. 2020. Т. 28, № 3 (17). С. 86-91.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vestnik IzhGTU imeni M.T. Kalashnikova
This work is licensed under a Creative Commons Attribution 4.0 International License.