Hardening Gradient Accuracy of Contact Surfaces of Gears

Authors

  • S. Y. Lebedev Industrial University of Tyumen
  • V. N. Syzrantsev Industrial University of Tyumen
  • M. N. Mikhailova Industrial University of Tyumen

DOI:

https://doi.org/10.22213/2413-1172-2022-2-14-22

Keywords:

hardness profile, hardness gradient, case hardening, chemical-thermal treatment, gear

Abstract

Case-hardening of contact surfaces of teeth can increase durability and reliability of gears. In gears, chemical-thermal hardening by nitriding, carburizing and nitrocarburizing has become widespread. When performing design and verification calculations of gears, it is necessary to know the hardness gradient of the tooth hardened case, the accuracy of which determines the correctness of transmission calculations. The purpose of the article is to evaluate the accuracy of the existing functions of hardness gradient over the depth of the hardened case of gear contact surfaces based on known experimental data; the subject of research is the hardness gradient of carburized and nitrocarburized surfaces of gears. The analysis of the existing hardness gradient of carburized and nitrocarburized surfaces of gears used in verification calculations of gears for resistance to bending fatigue and tooth interior fatigue fracture is carried out. The article presents the hardness gradient proposed by Tesker E.I., Korotkin V.I., Mack Aldener M., Dang Van K., Thomas J. To estimate the accuracy of the considered hardness gradient, the approximation error was calculated. The approximating functions were the hardness gradient, and the actual values were the results of well-known experiments to determine the hardness by the depth of the hardened case of carburized and nitrocarburized rollers. The calculation was implemented using the MathCad package, in which the figure of the hardness gradient presented in the article were also built for all the experimental results used. As a result of the calculation, the most accurate hardness gradient of carburized and nitrocarburized cases were determined. The hardness gradient proposed by MackAldener M. gives the least error during carbonization (up to 1.1 %). The hardness function proposed by V. I. Korotkin for nitrocarburizing gives the least error (up to 2.3 %). The least accurate values were shown by the hardness gradient developed by Dang Van K. (up to 5 %). The work performed is part of the study aimed at improving the methodology for assessing the reliability of case-hardened cylindrical gears based on the use of numerical modeling methods and non-parametric statistics tools.

Author Biographies

S. Y. Lebedev, Industrial University of Tyumen

Post-graduate

V. N. Syzrantsev, Industrial University of Tyumen

DSc in Engineering, Professor

M. N. Mikhailova, Industrial University of Tyumen

Industrial University of Tyumen

References

Сопротивление контактной усталости крупномодульных зубчатых колес из хромоникелевых сталей / С. П. Руденко, А. Л. Валько, С. А. Шишко, П. Г. Карпович // Механика машин, механизмов и материалов. 2019. № 1 (46). С. 58-63.

Тескер Е. И., Гуревич Л. М. Современные требования к свойствам поверхностных слоев высоконагруженных деталей машинного оборудования в нефтегазхимии // Известия ВолгГТУ. 2019. № 4 (227). С. 56-60.

Hein M., Tobie T., Stahl K. Parameter study on the calculated risk of tooth flank fracture of case hardened gears. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2017, no. 11, pp. 1-6.

Руденко С. П., Валько А. Л. Определение параметров химико-термической обработки высоконапряженных зубчатых колес на основе расчетных моделей // Упрочняющие технологии и покрытия. 2018. Т. 14, № 8. С. 353-358.

Тескер Е. И. Перспективы применения лазерной обработки (ЛО) для повышения надежности и технического уровня зубчатых колес трансмиссий и приводов // Вестник ИЖГТУ имени М. Т. Калашникова. 2017. Т. 20, № 2. С. 97-102. DOI: 10.22213/ 2413-1172-2017-2-97-102.

Kosenko V.V., Tesker E.I. Effect of axial play on the sealing ability of the radial single-lip seal in an abrasive environment. Journal of friction and wear, 2017, vol. 38, no. 3, pp. 237-241.

Короткин В. И., Колосова Е. М., Онишков Н. П. Оценка нагрузочной способности химико-термически упрочненных зубчатых передач с локальным контактом зубьев // Вестник машиностроения. 2020. № 8. С. 34-37. DOI: 10.46652/0042-4633-2020-8-34-37.

Онишков Н. П., Короткин В. И. К оценке контактно-усталостной долговечности химико-термоупрочненных зубчатых колес // Вестник Донского государственного технического университета. 2017. № 3 (90). С. 5-13.

Короткин В. И., Колосова Е. М., Онишков Н. П. Прогнозирование контактной выносливости упрочненных зубьев и нагрузочной способности эвольвентных зубчатых передач по критерию предельного состояния материала // Вестник машиностроения. 2021. № 12. С. 35-37.

Yao Li, Caichao Zhu, Xu Chen, Jianjun Tan. Fatigue Reliability Analysis of Wind Turbine Drivetrain Considering Strength Degradation and Load Sharing Using Survival Signature and FTA. Energies, 2020, no. 13, pp. 1-21. DOI: 10.3390/en13082108.

Brecher Ch., Löpenhaus Ch., Brimmers J., Henser J. Influence of the Defect Size on the Tooth Root Load Carrying Capacity. Gear Technology, November/December, 2017, pp. 92-100.

Concli F., Fraccaroli L., Maccioni L. Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears. Metals, 2021:11:863. DOI: 10.3390/ met11060863.

Glodež S., Šori M., Vučković K., Risović S. Determination of Service Life of Sintered Powder Metallurgy Gears in Regard to Tooth Bending Fatigue. Croatian Journal of Forest Engineering, 2018, no. 39, pp. 129-137.

Zhou Ye, Zhu Caichao, Huaiju Liu, Hailan Song. Investigation of Contact Performance of Case-Hardened Gears Under Plastoelastohydrodynamic Lubrication. Tribology Letters, 2019, pp. 67-92. DOI: 10.1007/ s11249-019-1202-7.

Houyi B., Caichao Z., Ye Zh., Xiaojin Ch., Houbin F., Wei Ye. Study on Tooth Interior Fatigue Fracture Failure of Wind Turbine Gears. Metals, 2020, no. 10, 1497, pp. 1-18. DOI: 10.3390/met10111497.

Wang W., Liu H., Zhu C., Tang J., Jiang Ch. Evaluation of contact fatigue risk of a carburized gear considering gradients of mechanical properties. Friction, 2020, no. 8, pp. 1039-1050. DOI: 10.1007/s40544-019-0317-z.

Yuan Tao Sun, Chao Liu, Qing Zhang, XianRong Qin. Multiple Failure Modes Reliability Modeling and Analysis in Crack Growth Life Based on JC Method. Mathematical Problems in Engineering, 2017, pp. 1-5. DOI: 10.1155/2017/2068620.

ZonglinGu, Caichao Zhu, Huaiju Liu, Xuesong Du. A comparative study of tribological performance of helical gear pair with various types of tooth surface finishing. Industrial Lubrication and Tribology, 2018, no. 71, pp. 474-485.

Heli Liu, Huaiju Liu, Philippe Bocher, Caichao Zhu, Peitang Wei. Effects of the case hardening properties on the contact fatigue of a wind turbine gear pair.International Journal of Mechanical Sciences, 2018, no. 4, pp. 3-24. DOI: 10.1016/j.ijmecsci.2018.04.010.

Baydu C., Rupesh P., Langlois P.Comparison of Tooth Interior Fatigue Fracture Load Capacity to Standardized Gear Failure Modes. Gear solutions, 2017, pp. 47-57.

Published

28.06.2022

How to Cite

Lebedev С. Ю., Syzrantsev В. Н., & Mikhailova М. Н. (2022). Hardening Gradient Accuracy of Contact Surfaces of Gears. Vestnik IzhGTU Imeni M.T. Kalashnikova, 25(2), 14–22. https://doi.org/10.22213/2413-1172-2022-2-14-22

Issue

Section

Articles