Methods for Constructing and Properties of Unified and Individual Pressure Diagrams “Enthalpy - Moisture Content” of Compressed Air

Authors

  • V. N. Didenko Kalashnikov ISTU
  • D. A. Khvorenkov Kalashnikov ISTU
  • I. I. Fakhraziev Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2413-1172-2022-2-64-71

Keywords:

enthalpy, moisture, content air, pressure, dewpoint, temperature

Abstract

In engineering practice, when determining the characteristics of atmospheric air, I-d Ramzin diagrams are widely used, developed for a certain average barometric pressure. Direct transfer (without recalculation) of characteristics from atmospheric I-d diagrams to compressed air leads to serious errors. For compressed air, only individual and unified pressure I-d diagrams are applicable. Research objectives: creation of working (up to the level of algorithms) methods for constructing such I-d diagrams and establishing the boundaries of their applicability to air in a different state and at a different pressure. To construct I-d diagrams of compressed air, the atmospheric I-d diagram field is used. Humid air is assumed to be an ideal gas, the enthalpy of which does not depend on pressure. Isotherms and isoenthalps are copied from atmospheric I-d diagrams with their scale preserved. Also, the graph of the partial pressure of water vapor is copied, but its scale changes in proportion to the ratio of compressed air pressure to the accepted barometric pressure. Section 1 gives an algorithm for constructing pressure-individual I-d diagrams with a grid of curves of constant relative humidity. A method is given for determining at a given point such an I-d diagram of relative air humidity for a different pressure. This technique makes it possible to depict compressed air relative humidity curves on an atmospheric I-d diagram. For practical problems with the condensation of compressed air water vapor, it is convenient to use I-d diagrams unified by pressure, which are distinguished by the presence of a grid of saturated air relative humidity curves for a number of pressure values. Section 2 provides an algorithm for constructing unified I-d diagrams and gives a method for determining the relative humidity of unsaturated air at pressure P at a given point of such a diagram. The paper gives examples of the application of this technique.

Author Biographies

V. N. Didenko, Kalashnikov ISTU

DSc in Engineering, Professor

D. A. Khvorenkov, Kalashnikov ISTU

PhD in Engineering

I. I. Fakhraziev, Kalashnikov ISTU

Kalashnikov ISTU

References

Столетие I-d-диаграммы влажного воздуха: устройство, применение, модернизация / А. Г. Аверкин, А. И. Ерёмкин, Е. Г. Ежов, Ю. А. Аверкин // Региональная архитектура и строительство. 2017. № 4 (33). С. 166-172.

Аверкин А. Г., Ерёмкин А. И., Аверкин Ю. А. К вопросу расширения области применения I-d-диаграммы влажного воздуха при создании микроклимата помещений // Sciences of Europe. 2018. № 24-2 (24). С. 40-45.

Воронова О. С., Конопацкий Е. В. Геометрическое моделирование параметров физического состояния воды и водяного пара // Вестник кибернетики. 2019. № 1 (33). С. 29-38.

Olkhovskiy D.V., Zaitsev A.V., Semin M.A. Variation of cooling efficiency of air conditioning systems in working spaces of deep mines. Mining Informational and Analytical Bulletin, 2021, no. 12, pp. 110-119. DOI: 10.25018/0236_1493_2021_12_0_110.

Erdogan M., Bau U., Bardow A. Benchmarking commercial adsorbents for drying air in a packed bed. Applied Thermal Engineering, 2019, vol. 160, no. 113942. DOI: 10.1016/j.applthermaleng.2019.113942.

Lowrey S., Sun Z. Experimental investigation and numerical modelling of a compact wet air-to-air plate heat exchanger. Applied Thermal Engineering, 2018, vol. 131, pp. 89-101. DOI:10.1016/j.applthermaleng.2017.11.127.

Giampieri A., Ma Z., Ling-Chin J., Bao H., Smallbone A. J., Roskilly А. Р. Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness. Applied Energy, 2022, vol. 314, no. 118962. DOI: 10.1016/j.apenergy. 2022.118962.

Huang-Xi Fu, Xiao-Hua Liu. Review of the impact of liquid desiccant dehumidification on indoor air quality. Building and Environment, 2017, vol. 116, рр. 158-172. DOI:10.1016/j.buildenv.2017.02.014.

Bamimore O.T., Enibe S.O., Adedeji Paul. A. Parametric Effects On The Performance Of An Industrial Cooling Tower. Journal of Thermal Engineering, 2021, vol. 7, no. 4, рр. 905-917. DOI: 10.18186/thermal. 930791.

Риполь-Сарагоси Т. Л., Риполь-Сарагоси Л. Ф. Повышение энергоэффективности процесса адсорбционной осушки сжатого воздуха // Вестник Ростовского государственного университета путей сообщения. 2019. № 3 (75). С. 135-142.

Обзор методов очистки и осушки сжатого воздуха / А. А. Подчуфаров, А. А. Жердев, А. Н. Спирина, Д. А. Лавринов, Е. М. Быценко // Холодильная техника. 2020. № 4. С. 26-31.

Демин Ю. К., Картавцев С. В. Энерго- и ресурсосбережение при осушке сжатого воздуха в компрессорной установке // Энергосбережение и водоподготовка. 2017. № 1 (105). С. 8-12.

Курзина И. А., Мещеряков Е. П. Разработка энергосберегающих технологий осушения сжатого воздуха в процессе компримирования и подготовки для использования в промышленности и на транспорте // Вестник Томского государственного университета. Химия. 2017. № 9. С. 80-82. DOI: 10.17223/24135542/9/8.

Козлов В. В., Крылов П. В., Пискун Е. С. Анализ перспективных технологических схем подготовки воздуха в системах термостатирования стартовых комплексов // Инженерный журнал: наука и инновации. 2021. № 9 (117). DOI: 10.18698/2308-6033-2021-9-2111.

Балалаев А. Н., Фащевский Н. Н. Совершенствование процесса осушения сжатого воздуха при техническом обслуживании пассажирских вагонов на ПТО // Вестник Донецкой академии автомобильного транспорта. 2019. № 2. С. 55-64.

Kozlov V.V., Shadrin V.S., Podchufarov A.A. Express analysis of technological processes of compression and drying of wet air at the stages of design and operation of compressor stations. AIP Conference Proc., 2019, vol. 2141, pp. 1-11. DOI: 10.1063/1.5122079.

Dai J., fa Diao Y. Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet. Applied Thermal Engineering, 2022, vol. 212, no. 118613. DOI: 10.1016/j.applthermaleng.2022.118613.

Kashif Shahzad M., Ding Y., Li Q., Xuan Y., Gao N., Chen G. Novel multifunctional open absorption heat pump system with compressed air dryer assisted preliminary flash regeneration-an industrial application. Applied Thermal Engineering, 2022, vol. 211, no. 118526. DOI: 10.1016/j.applthermaleng.2022.118526.

Srivatsa A., Perry Y. Li. How moisture content affects the performance of a liquid piston air compressor/expander. Journal of Energy Storage, 2018, vol. 18, рр. 121-132. DOI: 10.1016/j.est.2018.04.017.

Zhan C., Yin Y., Guo X., Jin X., Zhang X. Investigation on drying performance and alternative analysis of different liquid desiccants in compressed air drying system. Energy, 2018, vol. 165, pp. 1-9. DOI: 10.1016/j.energy.2018.09.164.

Published

28.06.2022

How to Cite

Didenko В. Н., Khvorenkov Д. А., & Fakhraziev И. И. (2022). Methods for Constructing and Properties of Unified and Individual Pressure Diagrams “Enthalpy - Moisture Content” of Compressed Air. Vestnik IzhGTU Imeni M.T. Kalashnikova, 25(2), 64–71. https://doi.org/10.22213/2413-1172-2022-2-64-71

Issue

Section

Articles