Impulse pressing of diamond-containing metal materials
DOI:
https://doi.org/10.22213/2413-1172-2023-1-4-12Keywords:
wear resistance, Kolsky method, compacts, impulse pressing, diamond-containing powder mixtureAbstract
He results of a study of the structure and wear resistance of compacts obtained from a finely dispersed mixture on a nickel bond of composition 70% Ni - 25% Cu - 5% Fe (average particle size about 50 μm) with the addition of micropowder diamond with a grain size of 5/3 with a 100% reference concentration were presented. Impulsed pressing of powder materials was carried out using a modified Kolsky method, which makes it possible to control the loading parameters and choose rational modes of powder material compaction with loading pulse durations in the range of 100-400 μs with pressure amplitudes up to 2000 MPa. Impulse pressing was carried out at a temperature of 20 °С. As a result, compacts with relative density of more than 98 % were obtained. Metallographic studies carried out on a NEOPHOT-32 microscope showed that the resulting compacts have a fairly uniform fine-grained structure. The overall pattern of pore distribution is quite uniform, the observed pore shapes are close to spherical and semiregular convex-concave volumes. X-ray microanalysis carried out on an energy-dispersive spectrometer in the mode of scanning along the surface line and transverse sections of the obtained compacts showed that dynamic pressing does not lead to a noticeable change in the distribution of the elements Ni, Cu, Fe, and C over the sample volume. The measurements of the microhardness of compacts showed that dynamic pressing leads to its growth, compared with the same parameter obtained on sheet samples after rolling and sintering. The compacts were tested for wear resistance in the dry friction mode according to the “rotating disk - stationary sample” scheme. The relationships of the mass loss of compacts and the test time are presented. It has been experimentally established that the wear resistance of compacts obtained by impulse pressing and subsequent sintering is higher compared to compacts obtained by traditional modes of pressing and subsequent sintering.References
Artini C., Muolo M.L., Passerone Alberto (2021) Diamond-metal interfaces in cutting tools. Journal of Materials Science, 2021, 47 (7), 3252-3264. DOI: 10.1007/s10853-011-6164-6.
Rajczyk Marlena, RajczykPawel (2019) Elements of Diamond Tools Development Used in the Technology of Building Materials Processing. IOP Conference Series, Materials Science and Engineering, 2019, 471, 052072. DOI: 10.1088/1757-899X/471/5/052072.
Bragov A.M., Igumnov L.A., Konstantinov A.Y., Lomunov A.K., Rusin E.E., Eremeyev V.A. (2020) Experimental analysis of wear resistance of compacts of fine-dispersed iron powder and tungsten monocarbidenanopowder produced by impulse pressing. Wear, 2020, 456-457, 203358.
Брагов А. М., Родионов С. Н., Русин Е. Е. Использование метода Кольского для исследования процессов импульсного прессования порошковых материалов // Письма в журнал технической физики. 2004. № 30 (21). С. 10-15. DOI: 10.1134/1.1829133
Meshalkin V.P. and Belyakov A.V. (2020) Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes. Processes, 2020, 8 (8), 1004. https://doi.org/10.3390/pr8081004.
Olevsky E.A., & Dudina D.V. (2018). Magnetic Pulse Compaction. Field-Assisted Sintering, 2018, 293-313. DOI: 10.1007/978-3-319-76032-2_9.
Bai Yu, Li Lei, Leijie Fu, Wang Qiangfeng (2021) A review on high velocity compaction mechanism of powder metallurgy. Science Progress, 2021, 104 (2), 1-20. DOI: 10.1177/00368504211016945.
Grigoriev C.N., Dmitriev A.M., Korobova N.V., Fedorov S.V. (2019). A Cold-Pressing Method Combining Axial and Shear Flow of Powder Compaction to Produce High-Density Iron Parts. Technologies, 7 (4), 70. DOI: 10.3390/technologies7040070.
Polyakov A.P. (2018) Dynamic powder compaction processes. Diagnostics, Resource and Mechanics of materials and structures, 2018, no. 2, pp. 42-82. DOI: 10.17804/2410-9908.2018.2.042-082.
Usama M. Attia (2021) Cold-isostatic pressing of metal powders: a review of the technology and recent developments. Critical Reviews in Solid State and Materials Sciences, 2021, vol. 46, Iss. 6. DOI: org/10.1080/ 10408436.2021.1886043.
Композиционные плакированные порошки для нанесения защитных покрытий / Е. Ю. Геращенкова, Бобкова Т. И., Самоделкин Е. А., Фармаковский Б. В. Вопросы материаловедения. 2019. № 1 (97). С. 59-64. https://doi.org/10.22349/1994-6716-2019-97-1-59-64.
Huang X., Lang L., Wang G., & Alexandrov S. (2018) Effect of Powder Size on Microstructure and Mechanical Properties of 2A12Al Compacts Fabricated by Hot Isostatic Pressing. Advances in Materials Science and Engineering, 1-7. DOI: 10.1155/2018/1989754.
Pervikov B.A., Toropkov N., Kazantsev S., Bakina O.V., Glazkova E., Lerner M. (2021) Preparation of Nano/Micro Bimodal Aluminum Powder by Electrical Explosion of Wires. Materials, 14 (21), 6602. https://doi.org/10.3390/ma14216602.
Samokhin A.V., Alekseev N.V., Astashov A.G., Kirpichev D.E., Fadeev A.A., Sinaiskiy M.A., & Tsvetkov Y.V. (2019) Synthesis and processing of powder materials in DC arc thermal plasma. Journal of Physics: Conference Series, 2019, 1393, 012126. DOI: 10.1088/1742-6596/ 1393/1/012126.
Nebojša D. Nikolić, Vesna M. Maksimović, Ljiljana Avramović (2021) Correlation of Morphology and Crystal Structure of Metal Powders Produced by Electrolysis Proc. Metals. DOI: 10.3390/met11060859.
Сравнение морфологических и структурных характеристик частиц нанопорошков, полученных измельчением природного алмаза и методом детонационного синтеза / П. П. Шарин, А. В. Сивцева, С. П. Яковлева, М. М. Копырин, С. А. Кузьмин, В. И. Попов, Л. А. Никифоров // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. № 4. С. 55-67. DOI: dx.doi.org/10.17073/1997-308X-2019-4-55-67.
Kashkarov A.O., Pruuel E.R., Ten K.A., Gerasimov E.Yu., Kremenko S.I., Rubtsov I.A., Dashapilov G.R., Pyrjaev P.A., Moroz B.L. (2019) Detonation synthesis of non-agglomerated metallic nanoparticles deposited on carbon supports. Journal of Physics: Conference Series, 2019, 1147, 012037. DOI: 10.1088/1742-6596/1147/1/012037.
Zhang X., Wan K., Subramanian P., Xu M., Luo J., Fransaer J. (2020) Electrochemical deposition of metal-organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8 (16), 7569-7587. DOI: 10.1039/d0ta00406e.
Challapalli Suryanarayana (2019) Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials Review Article. Research Volume, Article ID 4219812, 17 p. https://doi.org/10.34133/2019/4219812.
Витязь П. А., Ильющенко А. Ф., Савич В. В. Порошковая металлургия в Беларуси и мировые тенденции развития // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. №. 1. С. 98-106. DOI: dx.doi.org/10.17073/1997-308X-2019-1-98-106.
Кубанова А. Н., Гвоздев А. Е. История развития порошковой металлургии и ее применение в современных технологиях // Чебышевский сборник. 2021. Т. 22. Вып. 2. С. 437-448. DOI: 10.22405/2226-8383-2021-22-2-437-448.
Saheb S.H., Durgam V.K., Chandrashekhar A. (2020) A review on metal powders in additive manufacturing. Third International Conference on Inventive Material Science Applications: ICIMA. DOI: 10.1063/ 5.0026203.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vestnik IzhGTU imeni M.T. Kalashnikova
This work is licensed under a Creative Commons Attribution 4.0 International License.