Analysis of Underwater Robot Designs
DOI:
https://doi.org/10.22213/2413-1172-2023-1-35-47Keywords:
mobile robots, ROV locomotion, hydrodynamics, fish-like robots, biomimetics, underwater robotsAbstract
This article is devoted to the analysis of existing domestic and foreign designs of underwater robots. First of all, emphasis is placed on the description of structures and the analysis of their influence on the maneuverability of movement in a liquid. Various mechanisms of bringing underwater robots into motion are considered, approaches to modeling are described. A description and comparison of underwater mobile robots driven by screw propellers, depending on their number, location, and shape of the hull, is given, and the designs of robots implementing biosimilar motion in a liquid are considered in more detail. A comparison is made of the methods of movement in a liquid using screw propellers and with biosimilar or screwless methods of movement. An overview of the mechanisms used to form biosimilar movements is given, a description of the materials and properties of the hull characteristic of this type of underwater robots, as well as a description of the mechanism of movement in a liquid, taking into account resistance forces and buoyancy control. Particular attention is paid to the works devoted to the study of the shape of the tail of a fish-like robot, aimed at improving the efficiency of robot movement in liquid. The analysis made it possible to identify the strengths and weaknesses of the mechanisms used to implement biosimilar motion in a liquid. Based on the results of the analytical review, the typical structure of the underwater robot and the requirements to its components are considered. In conclusion, the current technical and scientific challenges facing researchers working on the creation of underwater robots operating both in autonomous and remotely controlled modes are discussed.References
Centelles D., Soriano-Asensi A., Martí J.V., Marín R. & Sanz P. J. (2019) Underwater Wireless Communications for Cooperative Robotics with UWSim-NET Applied Sciences 9, 2019, no. 17, p. 3526. DOI: 10.3390/app9173526
Miroshnikova N.E., Petruchin G.S. and Sherbakov A.V. (2019) Problems of Underwater Optical Links Modeling. Systems of Signal Synchronization, Generating and Proc. in Telecommunications (SYNCHROINFO), 2019, pp. 1-9. DOI: 10.1109/SYNCHROINFO. 2019.8813996
Tomczak A., Stępień G., Abramowski T. & Bejger A. (2022) Subsea wellhead spud-in marking and as-built position estimation method based on ultra-short baseline acoustic positioning. Measurement, 2022, 195, p. 111155. https://doi.org/10.1016/j.measurement.2022.111155
International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, 2012, pp. 1187-1192. DOI: 10.1109/ SPEEDAM.2012.6264510
Karavaev Y.L., Klekovkin A.V., Mamaev I.S., Tenenev V.A., Vetchanin E.V. (2021) A Simple Physical Model for Control of a Propellerless Aquatic Robot. ASME. J. Mechanisms Robotics. February 2022, 14 (1), pp. 011007. https://doi.org/10.1115/1.4051240
Yu J., Chen S., Wu Z. & Wang W. (2016) On a Miniature Free-Swimming Robotic Fish with Multiple Sensors.International J. of Advanced Robotic Systems. DOI: 10.5772/62887
Zheng X., Xiong M., Tian R., Zheng J., Wang M. and Xie G. (2022) Three-Dimensional Dynamic Modeling and Motion Analysis of a Fin-Actuated Robot: IEEE/ASME Transactions on Mechatronics, 2022, vol. 27, no. 4, pp. 1990-1997. DOIi: 10.1109/TMECH. 2022.3174173
Berg S., Scharff R., Rusák Z. & Wu J. (2020) Biomimetic Design of a Soft Robotic Fish for High Speed Locomotion. DOI: 10.1007/978-3-030-64313-3_35
Liang J., Wang T., Wang S., Zou D., & Sun J. (2005) Experiment of Robofish Aided Underwater Archaeology, 2005, 27, pp. 499-504. DOI: 10.1109/ ROBIO.2005.246318
Wang T., Wen L., & Liang J. (2010) Fuzzy Vorticity Control of a Biomimetic Robotic Fish Using a Flapping Lunate Tail: J. Bionic Eng, 7, pp. 56-65. DOI: 10.1016/S1672-6529(09)60183-9
Dorofeev V.Y., Kurnosov A.A., Lopota A.V., & Polovko S.A. (2022) Global Goals, Design Principles, Interaction Mechanisms, Destabilizing Effects and Rational Organization of the Development of RIC Systems. Izvestiya SFedU, Technical Science, 2022, no. 1 (203). URL: https://cyberleninka.ru/article/n/globalnyetseli-printsipy-proektirovaniya-mehanizmyvzaimodeystviya-destabiliziruyuschie-effektyi-ratsionalnaya-organizatsiya (in Russ.).
Chao Z., Zhiqiang C., Zeng-Guang H., Shuo W. & Tan M. (2013) Backward Swimming Gaits for a Carangiform Robotic Fish. Neural Computing and Applications, 2013, p. 23. DOI: 10.1007/s00521-012-1106-z
Korkmaz D., Akpolat Z. H., Soygüder S., & Alli H. (2015) Dynamic Simulation Model of a Biomimetic Robotic Fish with Multi-Joint Propulsion Mechanism. Transactions of the Institute of Measurement and Control, 2015, 37 (5), pp. 684-695. DOI: 10.1177/ 0142331214565710
Yang X., Zheng L., Lü D., Wang J., Wang S., Su H., Wang Z. and Ren L. (2022) The Snake-Inspired Robots: a Review. Assembly Automation, 2022, vol. 42, no. 4, pp. 567-583. https://doi.org/10.1108/AA-03-2022-0058
Guo B., Xu J., Zheng S., Wang K., Chang J. (2022) Flow Characteristics of a Fish-Like Body Based on Taguchi Method under Different Strouhal Numbers. Mathematical Problems in Engineering, 2022, Article ID 1592792, p. 13. https://doi.org/10.1155/2022/1592792
Yu J., Wang L., & Tan M. (2005) A Framework for Biomimetic Robot Fish's Design and its Realization: Proc. of the 2005, American Control Conference, 2005, vol. 3, pp. 1593-1598. DOI: 10.1109/ACC.2005.1470195
Wang J., Wu Z., Dong H., Tan M., & Yu J. (2022) Development and Control of Underwater Gliding Robots: A Review. IEEE/CAA J. of AutomaticaSinica, 2022, 9 (9), pp. 1543-1560. DOI: 10.1109/ JAS.2022.105671
Beomchan K., Yongkyu L., Tailin P., Zhengbing D. & Wei W. (2021) Robotic soft swim bladder using liquid - vapor phase transition: Materials Horizons., 8. DOI: 10.1039/D0MH01788D
Nguyen D. Q., & Ho V.A. (2022) Anguilliform Swimming Performance of an Eel-Inspired Soft Robot. Soft Robotics, 2022, 9 (3), pp. 425-439. DOI: https://doi.org/10.1089/soro.2020.0093
Martínez-García E.A., Lavrenov R., & Magid E. (2022) Robot Fish Caudal Propulsive Mechanisms: A Mini-Review. DOI: 10.5772/acrt.09
Kimoto T., Yamano A., & Chiba M. (2023) Estimation of Fluid Forces on a Snake-like Robot Swimming in Viscous Fluids Considering Boundary Layer Thinning: 2023 IEEE/SICE International Symposium on System Integration (SII), pp. 1-6. DOI: 10.1109/ SII55687.2023.10039336
Huang S., Qiu H. & Wang Y. (2022) Aerodynamic performance of horizontal axis wind turbine with application of dolphin head-shape and lever movement of skeleton bionic airfoils. Energy Conversion and Management, 2022, 267, p. 115803. DOI: https://doi.org/10.1016/j.enconman.2022.115803
Nesteruk I. (2022) Shapes of the fastest fish and optimal underwater and floating hulls. Theoretical and Applied Mechanics Letters, 2022, 12 (6), p. 100378. DOI: https://doi.org/10.1016/j.taml.2022.100378
Winfried P. (2022) Underwater-sailing locomotion in intertidal gastropods: a comparison of Neotropical species. Archiv für Molluskenkunde International J. of Malacology. DOI: 151. 93-105. 10.1127/arch.moll/151/093-105
Hu Q., Yu Y. (2021) Hydrodynamic scaling law in undulatory braking locomotion. Sci. China Phys. Mech. Astron. 64, p. 274711. https://doi.org/10.1007/s11433-021-1701-5
Lang, Amy & Motta, Philip &Habegger, M. Laura & Hueter, Robert (2012) Shark Skin Boundary Layer Control. DOI: 10.1007/978-1-4614-3997-4_9
Lauder G. & Drucker E. (2003) Forces, Fishes, and Fluids: Hydrodynamic Mechanisms of Aquatic Locomotion. News in physiological sciences: an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, 2003, 17, pp. 235-40. DOI: 10.1152/nips.01398.2002
Sfakiotakis M., Lane D.M. & Davies J.B.C (1999) Review of fish swimming modes for aquatic locomotion, in IEEE Journal of Oceanic Engineering, vol. 24, no. 2, pp. 237-252, DOI: 10.1109/48.757275.
Lushnikov B.V., Yatsun S.F., Kazaryan K.G., Savin S.I., Boys A.V., Tarasova E.S., Politov E.N., Yatsun A.S. (2009) Useful model 124656 Russian Federation, IPC B62D57/00. Underwater floating robot with bionic principle of motion. Retrieved from: https://poleznayamodel.ru/model/12/124656.html (in Russ.).
Ye Z., Hou P., Chen Z. (2017) 2D maneuverable robotic fish propelled by multiple ionic polymer-metal composite artificial fins. J.Intell Robot Appl 1, 2017, pp. 195-208. DOI: 10.1007/s41315-017-0019-5
Baines R.L., Booth J.W., Fish F.E. & Kramer-Bottiglio R. (2019) Toward a bio-inspired variable-stiffness morphing limb for amphibious robot locomotion: 2nd IEEE International Conference on Soft Robotics (RoboSoft), 2019, pp. 704-710. DOI: 10.1109/ ROBOSOFT.2019.8722772
Mao S., Dong E., Jin H. (2014) Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. J Bionic Eng, 2014, vol. 11, pp. 400-441. DOI: 10.1016/S1672-6529(14)60053-6
Patterson Z.J., Sabelhaus A.P. Chin, K., Hellebrekers T. & Majidi C. (2020) An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion, 2020, pp. 8758-8764. DOI: 10.1109/ IROS45743.2020.9341008
Robertson M.A., Efremov F. & Paik J. (2019) RoboScallop: A Bivalve Inspired Swimming Robot: IEEE Robotics and Automation Letters, 2019, vol. 4, no. 2, pp. 2078-2085. DOI: 10.1109/LRA.2019.2897144
Jin H., Dong E., Alici G., Mao S., Min X., Liu C., Low K.H. & Yang J. (2016) A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspir Biomim, 2016, 11 (5):056012. PMID: 27609700. DOI: 10.1088/1748-3190/11/5/056012
Yang T. & Chen Z. (2015) Development of 2D maneuverable robotic fish propelled by multiple ionic polymer-metal composite artificial fins. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 255-260. DOI: 10.1109/ROBIO.2015. 7418776
Wehner M., Truby R.L., Fitzgerald D.J., Mosadegh B., Whitesides G.M., Lewis J.A., & Wood R.J. (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536 (7617):451-5. PMID: 27558065. DOI: 10.1038/nature19100
Cloitre A., Subramaniam V., Patrikalakis N. & Alvarado P. (2012) Design and control of a field deployable batoid robot: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 707-712. DOI: 10.1109/ BioRob.2012.6290739
Jindong L. & Huosheng H. (2010) Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish. J. of Bionic Engineering, 2010, 7, pp. 35-48. DOI: 10.1016/S1672-6529(09)60184-0
Du S., Wu Z., Wang J., Qi S. and Yu J. (2021) Design and Control of a Two-Motor-Actuated Tuna-Inspired Robot System: In IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 51, no. 8, pp. 4670-4680. DOI: 10.1109/TSMC.2019.2944786
Sverdrup-Thygeson J., Kelasidi E., Pettersen K.Y. and Gravdahl J.T. (2016) The underwater swimming manipulator-a bio-inspired AUV: Proc. of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 387-395, IEEE, Tokyo, Japan. DOI: 10.1109/ AUV.2016.7778701
Liu J., Wu Z. and Yu J. (2016) Design and implementation of a robotic dolphin for water quality monitoring. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 835-840. DOI: 10.1109/ ROBIO.2016.7866427
Guocai Y., Jianhong L., Tianmiao W., Xingbang Y., Qi S., Yucheng Z., Hailiang W. & Weicheng T. (2013) Development of a turtle-like underwater vehicle using central pattern generator. IEEE International Conference on Robotics and Biomimetics, ROBIO 2013, 44-49. DOI: 10.1109/ROBIO.2013.6739433
Salunkhe S., Patil S. (2021) A Review on Actuator and Manipulator Techniques in Soft Robotics. Advances in Automation, Signal Processing, Instrumentation, and Control. i-CASIC 2020. Lecture Notes in Electrical Engineering, vol. 700. Springer, Singapore. https://doi.org/10.1007/978-981-15-8221-9_12
Karavaev Y., Kilin A., Klekovkin A. (2016) Experimental investigations of the controlled motion of a screwless underwater robot. Regular and Chaotic Dynamics, 2016, 21, 918-926. DOI: 10.1134/ S1560354716070133
Rozman B.Ya. & Rimsky-Korsakov N.A. (2017) EQUIPMENT COMPLEXES FOR REMOTE OBSERVATIONS IN THE HYDROSPHERE.International J. of Applied and Fundamental Research, 2017, No. 11-2, pp. 276-280. Retrieved from: https://applied-research.ru/ru/article/view?id=12013
Giacomo M. & Junku Y. (2014) The SAUVIM Underwater Vehicle-Manipulator System. Springer Tracts in Advanced Robotics, Retrieved from: https://link.springer.com/book/10.1007/978-3-642-54613-6
Islam A. & Taravella B. (2021) Design of a Depth Control Mechanism for an Anguilliform Swimming Robot. Biomimetics, 2021, 6, 39. DOI: 10.3390/ biomimetics6020039
Ai X., Kang S. and Chou W. (September 2018) System design and experiment of the hybrid underwater vehicle. Proc. of the 2018 International Conference on Control and Robots (ICCR), Hong Kong, China. DOI: 10.1109/ICCR.2018.8534493
Hidaka S., Kawashima S. & Nam S. (2015) System design and hardware development of autonomous underwater robot "daryabird". Proc. of the AUVSI&ONR's 18th Annual RoboSub Competition Journal Paper, San Diego, CA, USA. Retrieved from: https://robonation.org/app/uploads/sites/4/2019/10/Kyutech_RS15_Paper.pdf
Yang X & Xing Y. (2021) Tuning for robust and optimal dynamic positioning control in Blue ROV2. IOP Conference Series: Materials Science and Engineering, 1201, 012015. DOI: 10.1088/1757-899X/1201/1/012015
Radojevic M., M.Nawaf M. & Maurelli F. (2011) Nessie VI AutonomousUnderwaterVehicle. Retrieved from: https://braincadet.com/papers/nessie11.pdf
Zain Z. M., Noh M. M., Ab Rahim K. A. & Harun N. (2016) Design and development of an X4-ROV. IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), 2016, pp. 207-211. DOI: 10.1109/USYS.2016.7893910
Rui Y., Benoit C., Ali M., Ming L. & Nailong W. (2015) Modeling of a Complex-Shaped Underwater Vehicle for Robust Control Scheme. J. of Intelligent & Robotic Systems, 2015, 80, 1-16. DOI: 10.1007/s10846-015-0186-2
Neira J., Sequeiros C., Huamani R., Machaca E., Fonseca P., Nina W. (2021) Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control. J. of Robotics, vol. 2021, Article ID 5542920, p. 26, https://doi.org/10.1155/2021/5542920
Kiselev L.V., Medvedev A.V. (2012) [Comparative analysis and optimization of dynamic properties of autonomous underwater robots of various projects and configurations]. Podvodnye issledovanija i robototehnika, 2012, no. 1 (13), pp. 24-35 (in Russ.)
Lushnikov B.V., Yatsun S.F., Politov E.N., Tarasova E.S. (2010) [Computer simulation of the dynamics of a bionic floating robot]. Materialy Samarskogo nauchnogo centra Rossijskoj akademii nauk, 2010, no. 4-3. URL: https://cyberleninka.ru/article/n/kompyuternoemodelirovanie-dinamiki-bionicheskogo-plavayuschegorobota (accessed: 02/19/2023) (in Russ.).
Ay M., Korkmaz D., OzmenKoca G., Bal C., Akpolat Z.H., Bingol M.C. (2018) Mechatronic Design and Manufacturing of the Intelligent Robotic Fish for Bio-Inspired Swimming Modes. Electronics, 2018, 7(7):118. https://doi.org/10.3390/electronics7070118
Filaretov V.F., Lebedev A.V., Yukhimets D.A. (2005) [Devices and control systems of underwater robots]. Moscow Nauka Publ., 272 p. (in Russ.)
Rodriguez Pablo & Piera Jaume. (2005). Mini AUV, a Platform for Future Use on Marine Research for the Spanish Research Council. Instrumentation View Point, 2005, no. 4, p. 6.
Gafurov Salimzhan & Klochkov Evgeniy (2015) Autonomous Unmanned Underwater Vehicles Development Tendencies. Proc. Engineering. DOI: 106.10.1016/j.proeng.2015.06.017.
Russell B. Wynn, Veerle A.I. Huvenne, Timothy P. Le Bas, Bramley J. Murton, Douglas P. Connelly, Brian J. Bett, Henry A.Ruhl, Kirsty J. Morris, Jeffrey Peakall, Daniel R. Parsons, Esther J. Sumner, Stephen E. Darby, Robert M. Dorrell & James E. Hunt (2014) Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience, Marine Geology, vol. 352, pp. 451-468. DOI: 10.1016/j.margeo.2014.03.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vestnik IzhGTU imeni M.T. Kalashnikova
This work is licensed under a Creative Commons Attribution 4.0 International License.