Impact Assessment of the Chirp Signal Frequency Change Rate on the Energy Secrecy and Noise Immunity

Authors

  • L. A. Senatorov Kalashnikov ISTU
  • V. V. Khvorenkov Kalashnikov ISTU
  • E. M. Zaytseva Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2413-1172-2023-2-85-93

Keywords:

signal frequency change rate, energy secrecy, matlab, chirp signal, noise immunity

Abstract

The article deals with the issues of noise immunity and energy secrecy of chirp signals. The purpose of the article is to study the rate of chirp signal frequency change and its influence on signal parameters, such as the envelope and spectrum of the signal, the degree of its energy secrecy and noise immunity. A study was made of the chirp signal frequency change rate influence on the amplitude spectrum of the transmitted signal. The study showed that an increase in the chirp signal frequency change rate leads to an increase in the slope control of the sawtooth voltage. In this case, the width of the amplitude spectrum changes in direct proportion to the change in the frequency band. Based on the results, the assumption was made about the positive effect of increasing the slope of the control signal on noise immunity and energy secrecy. The effect of the chirp signal frequency change rate on the degree of energy secrecy is studied by means of the author's method to estimate the energy of the transmitted symbol. The simulation results showed that the rate of change in the frequency of the chirp signal does not lead to a change in energy and does not affect the degree of energy secrecy. A study was made of the chirp signal frequency change rate influence on the noise immunity of the transmitted signal. It was proposed to investigate a real high-frequency chirp signal using the weighting method on a set of matched filters. The method made it possible to investigate the noise immunity of chirp signals with different parameters and compare the obtained data with the noise immunity of the GMSK signal of the Gonets-M satellite communication system. As a result, some regularities were found that allow us to evaluate the effect of the rate of change in the frequency of the chirp signal on its noise immunity. Comparison of GMSK and chirp signals made it possible to verify the effect of introducing chirp signals into satellite communication systems. As a result of the study, conclusions were drawn about the influence of the choice of chirp signal frequency change rate on noise immunity and energy secrecy.

Author Biographies

L. A. Senatorov, Kalashnikov ISTU

Postgraduate

V. V. Khvorenkov, Kalashnikov ISTU

DSc in Engineering, Professor

E. M. Zaytseva, Kalashnikov ISTU

PhD in Education, Associate Professor

References

Cirak Bekir (2023) Modelling and Simulation of Photovoltaic Systems Using MATLAB Simulink. WSEAS TRANSACTIONS ON POWER SYSTEMS, 2023, 18, 49-56, 10.37394/232016.2023.18.6

Nandi Swagata Grover, Rhythm Kundu Debasis (2022) Estimation of parameters of two-dimensional random amplitude chirp signal in additive noise. Multidimensional Systems and Signal Processing, 2022, 33, 10.1007/s11045-022-00831-1

Wang Junyuan He, Huihui Wang, Zhijian Du, Wenhua Duan, Nengquan Zhang Ziying (2020) Application of Optimized Adaptive Chirp Mode Decomposition Method in Chirp Signal. Applied Sciences, 2020, 10, 3695, 10.3390/app10113695

Dhar Subhra (2021) Quantile Process with Applications: Chirp Signal Model, 10.36227/techrxiv.17075720.v1

Ponomarchuk Sergey, Grozov Victor, Ilyin N., Kurkin V.I., Oinats Alexey, Penzin Maskim, Podlesnyi A., Tsedrik M. (2022) Backscatter Ionospheric Sounding by a Continuous Chirp Signal. Radiophysics and Quantum Electronics, 2022, 64, 1-14, 10.1007/s11141-022-10162-7

Arkhipenkov D. (2022) Algorithm for Recognizing the Type of Modulation and Measuring Parameters of Radar Signals with Chirp. Doklady BGUIR, 2022, 20, 22-29, 10.35596/1729-7648-2022-20-6-22-29

Qi Liangang Shen, Zhenheng Guo, Qiang Wang, Yani Kaliuzhnyi Mykola (2022) Chirp Rates Estimation for Multiple LFM Signals by DPT-SVD. Circuits, Systems and Signal Processing, 2022, 42, 10.1007/s00034-022-02225-x

Jie Li Shi, Mengyue Wu, Yong Fang, Zhiwei Wang, Jiajin Mu, Huan Hu, Weisheng Yi Lilin (2023) Spectral broadening scheme for suppressing SBS effects based on time-domain optimized chirp-like signals. Optics Express, 2023, 31, 10.1364/OE.483307

Elgamel Sherif (2022) Overlapped Chirp Signals' Parameters Estimation in Radar ESM Station. Advances in Military Technology, 2022, 17, 439-455. 10.3849/aimt.01754

Афанасьев Д. С. Цифровая обработка ЛЧМ-сигнала // Известия СПБГЭТУ - ЛЭТИ. 2022. Т. 15, № 4. С. 44-48.

Falkenberg Andreas (2022) Efficient Implementation of a Digital Chirp Generator, 10.23919/ MIKON54314.2022.9924956

Firmansyah Iman, Yamaguchi Yoshiki (2020) FPGA-based implementation of a chirp signal generator using an OpenCL design: Microprocessors and Microsystems, 77, 103199. 10.1016/j.micpro.2020.103199

Zhao Zhencong Rao, Ying Wang Yanghua (2023) The W transform with a chirp-modulated window: Geophysics, 88, 1-8, 10.1190/geo2022-0083.1

Long Teng Li, Yang Zhang, Weifeng Liu, Quanhua Chen, Xin Liang Tian, Weiming Yang Xiaopeng (2022) Chirp Signal Processing. 10.1007/978-981-19-7561-5_3

Зайцев А. В., Разин А. А. Исследование сигнала в виде пачки когерентных импульсов с нерегулярной структурой // Вестник концерна ВКО "Алмаз - Антей". 2022. № 3. С. 41-47. https://doi.org/10.38013/2542-0542-2022-3-41-47

Евстафьев Г. А., Селянская Е. А. Метод обеспечения структурной скрытности сигнала // Системы синхронизации, формирования и обработки сигналов. 2021. Т. 12, № 4. С. 39-45. EDN WMFFKQ.

Zhuang Louise Dahl, Jeremy Zebker, Howard Jakovljevic Marko (2023) Rapid beamforming of ultrasound chirp signals in frequency domain using the chirp scaling algorithm. J. of the Acoustical Society of America, 153, A242-A242, 10.1121/10.0018774

Довбня В. Г., Коптев Д. С., Бабанин И. Г. Оценка потенциальной помехоустойчивости приема цифровых сигналов, используемых в современных и перспективных системах радиорелейной и спутниковой связи // Известия Юго-Западного государственного университета. Серия: Управление, вычислительная техника, информатика. Медицинское приборостроение. 2020. Т. 10, № 1. С. 21-35.

Ostovari P. and Wu J. (2017) Fault-Tolerant and Secure Data Transmission Using Random Linear Network Coding: 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 2017, 1-9. DOI: 10.1109/ICCCN.2017.8038417

Тихонов С. С., Кудрявцев А. М., Дворников С. В. Энергетическая скрытность сигналов ППРЧ, сформированных в базисах функций сплайн-характеров // Информация и космос. 2017. № 2. С. 35-41.

Published

19.07.2023

How to Cite

Senatorov Л. А., Khvorenkov В. В., & Zaytseva Е. М. (2023). Impact Assessment of the Chirp Signal Frequency Change Rate on the Energy Secrecy and Noise Immunity. Vestnik IzhGTU Imeni M.T. Kalashnikova, 26(2), 85–93. https://doi.org/10.22213/2413-1172-2023-2-85-93

Issue

Section

Articles